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ABSTRACT

Managing Autonomy by Hierarchically Managing Information:
Autonomy and Information at the Right Time

and the Right Place

Rongbin Lanny Lin
Department of Computer Science, BYU

Doctor of Philosophy

When working with a complex AI or robotics system in a specific application, users
often need to incorporate their special domain knowledge into the autonomous system. Such
needs call for the ability to manage autonomy. However, managing autonomy can be a difficult
task because the internal mechanisms and algorithms of the autonomous components may be
beyond the users’ understanding. We propose an approach where users manage autonomy
indirectly by managing information provided to the intelligent system hierarchically at
three different temporal scales: strategic, between-episodes, and within-episode. Information
management tools at multiple temporal scales allow users to influence the autonomous
behaviors of the system without the need for tedious direct/manual control. Information
fed to the system can be in the forms of areas of focus, representations of task difficulty,
and the amount of autonomy desired. We apply this approach to using an Unmanned
Aerial Vehicle (UAV) to support Wilderness Search and Rescue (WiSAR). This dissertation
presents autonomous algorithms/components and autonomy management tools/interfaces we
designed at different temporal scales, and provides evidence that the approach improves the
performance of the human-robot team and the experience of the human partner.

Keywords: Unmanned Systems, Path Planning, Navigation, Human-Robot Interaction,
Adjustable Autonomy, Sliding Autonomy, Bayesian Modeling
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Chapter 1

Background, Motivation, and Overview

1.1 Introduction

1.1.1 Problem Motivation

Because of rapid advancement in technology, more and more Artificial Intelligence (AI)

and robotics systems are appearing in various aspects of people’s lives. For example, there

are systems that assist humans to schedule limousine services [20], to evaluate and control the

damage of oil spills1, to support search and rescue missions [17, 71], and to provide treatment

to children with autism [96]. Such abundant and rapidly growing applications increase the

set of possible interactions between human users and autonomous systems. The humans in

such interactions are not likely the designers of the autonomous systems, but these humans

must still manage the autonomy.

Although AI and robotics systems have grown to be able to handle increasingly complex

tasks in uncertain environments, human assistance and supervision are often needed [3]. Even

for so-called fully autonomous systems, human input can potentially improve the system’s

performance and safety. Human experts can use domain-specific knowledge to assist an

AI/robotics system when it deals with changing environments, uncertainty, and case-specific

scenarios. Therefore, it is necessary to design tools and interfaces that enable human users

working with an AI/robotics system to manage the autonomous behaviors of the system

1http://spectrum.ieee.org/robotics/industrial-robots/the-gulf-spills-lessons-for-robotics
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efficiently and effectively; such tools can improve task performance and the experience of a

human partner in human-autonomy interaction.

However, human users often do not understand how the internal mechanisms of

an autonomous system work especially when the system is complicated or when complex

algorithms are involved. Instead, humans must rely on their own mental models of the system

during operation [80]. Supporting human interaction requires a design approach that lets

users understand how autonomous behaviors can be influenced without getting deeply into

how autonomy really works. This requirement makes designing for autonomy management

especially challenging.

1.1.2 General Solution Approach

We propose that autonomy management tools should let users hierarchically manage

information provided to an AI/robotics system. Good information management tools should

allow users to influence the autonomous behaviors of the system at multiple temporal scales

without the need for tedious direct/manual control. This dissertation presents autonomous

algorithms/components and autonomy management tools/interfaces designed at different

temporal scales and show that this approach improves the performance of the human-autonomy

team and the experience of the human-autonomy interaction.

The term “information” here covers a wide range of things including knowledge of the

environment (including other humans, equipment, and changes in the physical surroundings),

knowledge of the task at hand (including processes, procedures, rules, past experiences,

etc.), and interactions among various entities (task, environment, human, and the system).

In theory, an AI/robotics system can obtain, process, and analyze information in order

to complete the desired tasks. In practice, however, the system often has limited sensing

and reasoning capabilities, and there is useful information the system is either not capable

of obtaining or not able to understand/process. Often, the human users of such systems

have much better “information sensing” capabilities. These capabilities allow humans to

2
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Figure 1.1: Autonomy integration challenges defined along two dimensions. Horizontal
dimension: attributes of intelligence. Vertical dimension: organizational scale.

obtain information from their own resources such as past experiences, domain-specific training,

external communications (with team members, external systems, etc.), or even the AI/robotics

system itself. The human user is also capable of “digesting” various information and then

feeding the “filtered” information to the system in forms the system can understand. In a

sense, the human user acts as an “intelligent sensor” for the system. At the same time, by

deciding what information to provide to the system, the human user has a way of influencing

the system’s autonomous behaviors without the need for tedious manual control.

In an overall integrated intelligent system, autonomy typically exists as component

tools with the goal to offload portions of responsibility to autonomous algorithms. Figure 1.1

lists some key elements of the autonomy integration challenges we identified in [71] and

Chapter 6 along two dimensions: attributes of an intelligent system (capability, information

management, performance evaluation) and organizational scale (individual versus group).

This table provides guidelines on what attributes should be designed into an autonomous

component when it is part of a human-autonomy collaboration team and a much larger

distributed intelligent system. More detailed description of the guidelines will be presented

in Chapter 2 and 6 of the dissertation.

Good autonomy management tools will only let users manage information that allow

them to develop a clear causal relationship between information management actions and the

3
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changes of the system’s autonomous behaviors. Examples of such information include what

data set to use to train the system and which tasks deserve more attention. Such causal

relationships make developing correct mental models of the system easier leading to improved

task performance [79].

Information can be managed at different temporal scales. We propose a general

hierarchical framework that focuses on the following three temporal scales: strategic,

between-episodes, and within-episode2.

When an AI/robotics system is given a task, in the long-term span, the system can

generate a plan based on data and models from similar problems and follow general trends.

Such a plan is normally a strategic one without much details and enforced throughout the

entire “campaign”. Therefore, planning happens at the strategic scale. Since the same task

can be repeatedly performed during the operation (with different environments, constraints,

or phases of the operation), case-specific attributes and requirements need to be evaluated,

and the initial plan needs to be tailored to the specific case or episode. This step is planning

at the between-episodes scale with a medium-term span. During execution of the task,

the plan is carried out during the short-term span. But as new information becomes available

or when the environment changes due to uncertainty, the plan needs to be modified in real

time to achieve better task performance. This is planning during a “battle” and happens at

the within-episode scale. If the user of the system can manage information provided to

the system at different temporal scales, he/she can change the system plan and indirectly

influence the autonomous behaviors of the system.

To evaluate the usefulness of the proposed autonomy management approach, we apply

it to the application domain of using a UAV (Unmanned Aerial Vehicle) to support Wilderness

Search and Rescue (WiSAR). In the next section we explain what these temporal scales

means in that context.

2The term “episode” we use is similar to the one Russell and Norvig define in Chapter 2 of [98] when they
discussed episodic vs. sequential task environments. Our definition is more relaxed to include cases where
actions taken in previous episodes might impact the current episode with respect to task objectives, but each
episode is still by itself a separate and self-contained unit.

4



www.manaraa.com

Figure 1.2: Various components of the overall intelligent system (a distributed system) of
using a UAV to support Wilderness Search and Rescue. The three highlighted components
are related to UAV path planning.

1.1.3 Application Domain

A small camera-equipped UAV can quickly and cheaply provide aerial imagery of a

wilderness search area, especially hard-to-reach areas [41]. The MAGICC lab, the HCMI lab,

and the Computer Vision Lab at BYU have been researching UAV technologies for several

years and made great progress in UAV path-planning control, user interface design, and

computer vision [71]. Figure 1.2 shows the various components developed by the research

group. This dissertation focuses on the three highlighted components that are related to the

UAV path planning problem.

Past UAV field trials indicate that real WiSAR searchers like not having to worry

about keeping the UAV in the air or setting waypoints manually. Autonomy that offloads

or complements some search work is useful, but searchers also need to be able to manage

where to send the UAV as new evidence is gathered or hard-to-reach areas are identified.

Ideally, searchers need not understand the statistical models or complex algorithms used by

the UAV. Rather, searchers should manage autonomy by managing information provided to

the UAV system at different temporal scales. We focus on two important representations of

information: a probability distribution map and a task-difficulty map as shown in Figure 1.3.

5
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Figure 1.3: WiSAR searchers can manage autonomy by managing a probability distribution
map and a task-difficulty map at different temporal scales of the system.

Following the guidelines in Figure 1.1, we developed autonomous components/algorithms

and management tools/interfaces that meet the challenges of an integrated system and also

support collaboration between a human agent and an autonomous agent at different temporal

scales.

In this context, planning at the strategic scale means predicting where are likely places

to find the missing person based on past WiSAR scenarios and determining how to allocate

resources (ground searchers, K-9 units, volunteers, and manned/unmanned planes) based

on task difficulty. At the between-episodes scale, between each UAV flight, information

collected from previous flights and by other search teams are analyzed and incorporate into

the plan to determine how the UAV can be more efficiently used in the next flight. Then

at the within-episode scale, real-time data collected by the UAV and searcher insights are

used to adjust the UAV flight plan while the UAV is still in the air searching.

At the strategic scale, we developed the DistCreate and DiffCreate components.

DistCreate (Chapter 3) uses a Bayesian model to predict the probability distribution of the
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missing person’s likely location, using terrain features of the search area and past human

behavior data in the form of GPS track logs. Domain users can affect the model-generated

probability distribution by changing prior beliefs parameters and by determining what human

behavior data (data for selected regions, season, or missing person characteristics) to feed to

the model. DiffCreate (Chapter 5) is a tool that automatically generates a task-difficulty

map, a representation marking areas with low probability of detection, based on vegetation

coverage Landsat data from USGS satellite imagery servers3.

At the between-episodes scale, we developed two management tools: DistEdit

(Chapter 7), a tool that lets the user modify the probability distribution to specify areas of

focus with simple gestures, and DiffEdit (Chapter 7), a tool that lets the user use scribbles

to modify the task-difficulty map.

At the within-episode scale, we developed multiple path planning algorithms that

support partial detection and real-time feedback. We also present a SlidingAutonomy

interface (Chapter 6) that lets a human manage the amount of UAV autonomy along two

dimensions: a temporal constraints dimension deciding how much time is granted to a UAV

for each path segment, and a spatial constraints dimension using path segment ending points

to impose priorities to the path planning task.

1.2 Related Work

In their in-depth survey paper [39], Goodrich and Schultz define the HRI problem

as “understanding and shaping the interactions between one or more humans and one or

more robots.” They also specified robot-assisted search and rescue as a key area for HRI

research. In this section we first present related work in the general research area, then

discuss related research more specific to the domains of using UAVs to support Wilderness

Search and Rescue.

3http://www.usgs.gov/pubprod/

7



www.manaraa.com

1.2.1 General Research Area

When humans and robots work together as a team, balancing responsibilities between

human and autonomy becomes a difficult challenge. Drucker defines automation as a “concept

of the organization of work [28].” In their 1978 seminal paper [106], Sheridan and Verplank

propose the idea of a level of autonomy spectrum. At one end of the spectrum is full

teleoperation and at the other is full autonomy. In the middle of this spectrum, the robot

could suggest actions to humans or make decisions before informing humans. Parasuraman et

al. [90] extended this one-dimensional spectrum to four different broad functions: information

acquisition, analysis, decision selection, and action implementation.

In [105] Sheridan proposes supervisory control, in which a human divides the task into

a sequence of subtasks that the robot is capable of performing, and the human then provides

guidance when the autonomous system cannot solve a problem on its own. In contrast to the

top-down philosophy of supervisory control, a mixed-initiative approach advocates the idea of

dynamically shifting tasks when necessary [47]. Collaborative control, which can be thought of

as an instance of mixed-initiative interaction, is a robot-centric model; instead of the human

always being in-charge, the robot is treated as a peer and can make requests to humans

through dialogs [34]. Adjustable autonomy [26] (also referred to as sliding autonomy [25] or

adaptive automation [97]) is another type of mixed-initiative interaction, one that enables the

human-autonomy team to dynamically and adaptively allocate functions and tasks among

team members. Bradshaw et al. [14] propose two dimensions of Adjustable Autonomy

(descriptive and prescriptive) to address the two senses of autonomy (self-sufficiency and

self-directedness) and discuss how permissions, obligations, possibilities, and capabilities

can be adjusted. Bradshaw et al. [15] also summarized some widespread misconceptions on

autonomy and listed seven deadly myths of “autonomous systems.”

Scholtz defines in [113] four roles for a human in human-robot interaction: supervisor,

operator, mechanic, peer, and bystander. Goodrich and Schultz suggest two more roles:

mentor and information consumer [39]. Humphrey and Adams add another role, abstract
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supervisor [54]. With our information management approach, users can act as “intelligent

sensors” and manage what information to feed the system at different temporal scales.

Therefore, the human is taking on a smart “information sensor” role in HRI.

The idea of using humans as sensors is not new. For example, Kaber et al. advocate

using humans as active information processors in complex systems to support situation

awareness and effective performance [57]. Bourgault et al. include humans as augmented

sensor nodes in a wilderness search task [12]. Other researchers have experimented with

management at different resolution. Dias et al. [25] propose enabling interactions at different

levels of granularity. However, using information as a control mechanism to manage autonomy

at the three distinctive temporal scales we identified is different from previously published

approaches.

One component of our proposed solution, the SlidingAutonomy interface, falls

under the category of Adjustable Autonomy. Dorais et al. [27] discuss a framework for

human-centered autonomous systems for a manned Mars mission. The system enables users

to interact with these systems at an appropriate level of control but minimize the necessity

for such interaction. Bradshaw et al. discuss principles and pitfalls of adjustable autonomy

and human-centered teamwork, and then present study results on so-called “work practice

modeling” and human-agent collaboration in space applications [13]. In [58] Kaber et al.

describe an experiment simulating an air traffic control task where manual control was

compared to Adaptive Automation (AA). Results suggest that humans perform better with

AA applied to sensory and psychomotor information-processing functions than with AA

applied to cognitive functions; these results also suggest that AA is superior to completely

manual control. Brookshire et al. present preliminary results for applying sliding autonomy

to a team of robots performing coordinated assembling work to help the system recover from

unexpected errors and to thereby increase system efficiency [16]. Dias et al. identified six

key capabilities that are essential for overcoming challenges in enabling sliding autonomy in

peer-to-peer human-robot teams [25].

9



www.manaraa.com

The human is an integral part of the human-autonomy team. When working with

autonomy, the human often takes on the supervisor role. Bainbridge points out that automa-

tion requires the human operator to take additional management responsibilities [3], and

Sartar identified in [102] two automation management policies: management by consent and

management by exception, defining whether the human always retain authority or can the

system take initiative.

For complex automation, the human tends to rely on his/her mental models (defined

by Norman in [86]) to manage the system. Moray [80] provides a good summary of how

mental models are used and proposes that mental models “allow operators to think about

causal structures and functions in systems which they must control....” Goodrich and Boer

present a case study of Adaptive Cruise Control design and explain how an automobile driver

can switch among multiple mental models and use different management strategies [37, 38].

Lee and See propose that because people respond to technology socially, trust guides

reliance when unanticipated situations make it impractical or impossible to understand

automation [66]. Hoffman et al. [50] suggest “active exploration for trusting”(AET) and hope

this approach can promote both trust “calibration” and appropriate reliance.

Moray also points out that the operator’s internal model of the environmental and

task dynamics can affect how the operator samples information from the environment, and

display interfaces should be designed to attract the right amount of attention [78]. In [129]

Vicente suggests to follow the ecological approach [94] and design interfaces compatible with

the actual constraints of the environment so the operator’s understanding corresponds to

the actual behavior of the system. Given these principles of interaction, our information

management approach and proposed tools are compatible with these principles because they

allow a user to infer causal relationship between user actions and autonomous behavior

changes. The user interface designs enable the user to develop mental models of the system

that match how the system truly works and thereby improve the human-autonomy interaction

experience.

10
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Given the user interface and framework for interaction mentioned above, it is necessary

to evaluate the usefulness of the resulting system. Properly evaluating human-robot interaction

has always been a challenging problem due to the diversity of team setups, environmental

contexts, and tasks involved. Many metrics have been proposed in the literature. Crandall

and Goodrich proposed a metric called neglect time to measure interaction efficiency [24].

Together with neglect time, Olsen and Goodrich later added task effectiveness, robot attention

demand, fan out, and interaction effort to the list of metrics [89]. Steinfeld and et al. suggest

some common metrics for standardizing task-oriented human-robot interaction [113]. In [88],

Olsen presents a set of criteria for evaluating new UI systems. Crandall and Cummings

propose in [23] a set of metric classes that can predict how many robots should be in the

team and the system effectiveness for single-operator controlling multiple robots. We follow

guidelines provided in these papers to validate our proposed solution.

1.2.2 Supporting Wilderness Search and Rescue with a UAV

The goal of our research is to support fielded missions in the spirit of Murphy’s

work [17]. UAV technology has emerged as a promising tool in supporting WiSAR [9, 83].

In [10, 11] Bourgault et al. describe how to use a Bayesian model to create paths for a single

UAV or multiple coordinated UAVs to maximize the amount of probability accumulated by

the UAV sensors. In [12] they also include scalable collaborative human systems as augmented

sensor nodes and created paths for human ground searchers.

The BYU WiSAR research group has developed a variety of technologies to support

Wilderness Search and Rescue with small fixed-wing UAVs [5, 41, 42, 71]. The UAV system

has many autonomous capabilities. The UAV’s autopilot can stabilize the UAV during flight,

support waypoint following and auto launch/land modes, and provide gimbaled camera

control. Simple flight patterns and safety features are available when combining the autopilot

with UAV control interfaces [5, 71]. These basic UAV capabilities have been greatly extended

to provide better WiSAR support: A Bayesian model was developed by Lin and Goodrich [70]
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that uses terrain features to predict the likely locations of finding a lost person. Then,

Generalized Contour Search [41] and intelligent path planning algorithms [69, 85] have been

used to automatically generate flight paths for the UAV. A real-time temporally local mosaic

technique [81] has been used to “stitch” multiple video frames to provide increased opportunity

for detection and increased sense of relative spatial relationships for video analyst. Anomaly

detection algorithms [124] are also available that can mark objects with unnatural colors and

alert the video analyst. A metric named “see-ability” [82] was also developed to understand

search-related video quality and to index geo-tagged video frames.

Many path planning algorithms in the literature address obstacle avoidance while

planning a path to reach a destination using A* [92], LRTA* [53], D* [114], Voroni diagrams [5,

8], or probability roadmaps and rapidly-exploring random tree (RRTs) [91]. Hierarchical

heuristics approaches were also developed, such as Hierarchical A* (HA*) by Holte et al. [51],

hierarchical task-based real-time path planning by Naveed et al. [74], and Hierarchical-AO*

(HiAO*) by Meuleau and Brafman [84]. The algorithms we present solve a different path

planning problem by generating paths that make efficient use of the limited travel time and

maximizing the probability of finding the missing person. This is similar to the Vehicle Routing

Problem [64] and the Orienteering Problem (OP) [36], which is a variation of the Traveling

Salesman Problem (TSP) (with names such as Prize-Collecting TSP (PCTSP) [45] or TSP

with profits [30]), and is known to be NP-Hard [109]. Vansteenwegen et al. [128] gives a good

survey on the topic of OP, and listed various approaches such as exact methods [32, 65, 93],

approximate heuristic approaches [19, 77, 93], a genetic algorithm approach [122], and an ant

colony optimization approach [67]. These algorithms work well with OP problems that have

a small number of nodes (21–100 nodes). However, our path planning problem requires up to

1800 nodes with added challenges of repeated visits and partial detection, which are defined

later.

In order to intelligently plan paths for a UAV in a WiSAR context, it is necessary to

understand missing person behaviors and generate a probability distribution of likely places to
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find the missing person. Many researchers analyzed past WiSAR cases in order to understand

missing person behaviors [48, 49, 60, 104, 119]. [120] describes how to use mathematical

models to calculate the probability of detection, probability of area and probability of

success. The paper also describes an example search mission. Researchers also looked at

systematically utilizing GIS (Geographic Information System) information for search and

rescue applications [31, 111].

Due to factors such as lighting conditions, dense vegetation, or human observer

cognitive workload, even when sensor footprint covers the location of the missing person,

probability of detection can be less than 1. In the 1950’s, Koopman discussed the uncertainties

in the act of detecting hostile submarines with radars and proposed a concept called the

instantaneous probability of detection by one glimpse [61]. He presented simple search

algorithms and demonstrated how search effort should be distributed given a prior probability

distribution of the target and a known law of detection when only a limited total amount of

search effort (or time) is available [62].

Over the years, search theory has evolved to be able to deal with more complex search

problems. Stone [115] presents various search plans with partial detection models using

Lagrange multipliers and maximization of Lagrangians in finding stationary target in very

basic search problems when no false targets are present. Washburn [130] discusses how to

construct optimal search paths for different search problems. The author also developed

detection models based on radar/sonar and expanded the fundamentals of search theory to

include moving targets. More recent work includes [85] where Niedfeldt et al. present a UAV

path planning algorithm that utilizes probability of detection and maximizes the probability

of identifying an object using a N-step lookahead method, and [99] where Ryan and Hedrick

developed a control formulation for a fixed-wing UAV that minimizes the entropy of an

estimate distribution over a receding horizon for searching a moving target over a fixed time

horizon. Stone et al. used posterior probability maps and successfully located the wreckage

of Air France Flight 447 [116]. Metrics such as Koopman’s instantaneous probability of
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detection by one glimpse [61], “seeability” proposed by Morse et al. [82], and terrain and

vegetation information obtained from USGS [70] can be used to build a task-difficulty map

representing probability of detection in different search subregions.

In this dissertation, the UAV technology, human search experts, and associated

user interfaces is treated as an intelligent system with the integration of many component

autonomous algorithms and user interfaces. Integration at this level requires tremendous

effort. Salas and Fiore [100] provide great insights on challenges across people and machines,

and across time and space in distributed teams. Sycara and Lewis [118] also asked the

questions: 1) can a software agent perform the task? and 2) can the agent’s assistance

contribute toward team performance? Tso et al. [127] identified that integrating a UAV into

the search task creates at least two roles: a pilot that controls the UAV and a sensor operator

that analyzes the sensor outputs. Lessons from other search-related domains [29] show that

multiple roles are required and these roles can be supported by autonomy algorithms and

user interface technologies. These findings motivate and guide our research in developing

UAV technology to support WiSAR operations.

1.3 Thesis Statement

Designing autonomous components and autonomy management tools that let users

manage information provided to an intelligent system at different temporal scales allow

users to influence the autonomous behaviors of the system without the need for tedious

direct/manual control. This approach improves both the human’s experience during the

human-autonomy interaction and the performance of the human-autonomy team.

1.4 Project Description

We propose a new autonomy management approach that lets users manage the

autonomous behaviors of an AI/robotics system by hierarchically managing information at
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Figure 1.4: An example probability dis-
tribution map generated by a Bayesian
model.

Figure 1.5: An example task-difficulty
map generated using vegetation coverage
data with three difficulty levels.

different temporal scales. In this section, we describe how we apply the approach to using a

UAV to support WiSAR operations, and relate chapters of the dissertation to components

of the hierarchical approach. At each temporal scale, we briefly discuss what autonomous

components and autonomy management tools we developed, what kind of information the

user can manage, and direct readers to the related chapter for more details.

1.4.1 Solution Overview

When using a UAV to support WiSAR operations, there are two important representa-

tions of information: a probability distribution map and a task-difficulty map. The probability

distribution map encodes information about the likely location of the missing person and is

illustrated in Figure 1.4. In the figure, high values correspond to areas with high probability.

The task-difficulty map encodes information about how likely it is for a searcher to detect

the missing person if they were in a particular location. Figure 1.5 illustrates a task-difficulty

map with high values arising from areas with, for example, dense vegetation or low visibility,

indicating that likely detection is low in that area.
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Figure 1.6: Autonomous components and autonomy management tools of the dissertation
work at each temporal scale/hierarchy.

From a Bayesian perspective, the probability distribution map encodes prior and

posterior beliefs, and the task-difficulty map encodes (one minus) the likelihood of detection.

Both maps are needed for effective resource allocation and task prioritization. Throughout the

operation, domain experts can process information only available to them or not comprehen-

sible by autonomous components and then incorporate such information into the probability

distribution map and the task-difficulty map at different temporal scales (hierarchies), thus

managing autonomy by influencing the behavior of the autonomous components through

information management.

These two maps can be created systematically using statistical models at the strategic

scale by using general trends from reliable sources, acting as the general plan for resource

allocation used throughout the entire search operation. They can be easily modified by users

at the between-episodes scale to incorporate additional case-specific information obtained

from the previous episode of searching. They can then be used to facilitate resource allocation

and UAV path planning at the within-episode scale while the UAV is in the current episode

of searching.
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Figure 1.6 lists the various components of the dissertation work as they relate to these

two map representations. We describe them in detail below at each respective temporal scale.

All the autonomous components and autonomy management tools were designed following

autonomy integration guidelines we defined in [71] (Chapter 2 of the dissertation), which was

expanded in Chapter 6 (see Figure 1.1). Specifically, all the autonomous components we

designed allow interactivity through the probability distribution map and the task-difficulty

map, which enables the human agent to manage the behavior of autonomy. Additionally,

the SlidingAutonomy management tool also lets the human interact and manage path

planning autonomy through temporal and spatial constraints (Chapter 6 of the dissertation).

1.4.2 At the Strategic Scale

At the strategic scale, a probability distribution map and a task-difficulty map can be

created systematically.

We established in [70] (Chapter 2 of the dissertation) a Bayesian model (DistCreate)

that can generate the probability distribution map systematically using three types of terrain

features (topography, vegetation, and elevation) and past human behavior data. Searchers first

specify transitional probabilities (Beta distributions) between two terrain features as inputs.

Then the model produces the prior/posterior [98] predictive probability distribution(s), which

can be used to allocate resources and plan UAV paths. Figure 1.4 shows an example posterior

predictive probability distribution map generated by DistCreate. The user can influence

the model-generated probability distribution by managing two types of information: model

parameters and dataset.

We represent the probability distribution map in discretized form using a hexagonal

tessellation of the search region. We use Monte Carlo methods to encode changes in the map,

so model parameters include the users prior belief of the transition probabilities (probability

of a missing person moving from one hexagonal cell to a neighbor). This approach is based
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on the assumption that transition probabilities are easily interpreted by search experts, but

algorithm parameters are not.

Although the term “dataset” can broadly include many sources of data, here we refer

to GPS track logs of past human behavior. The user can choose whether or not to use

past human behavior data. If the user chooses not to use past human behavior dataset, the

DistCreate model will output the prior predictive distribution (prediction based only on

the model parameters); otherwise, the model will output the posterior predictive distribution

(prediction also based on past observations). The user can also choose what subset of the

dataset to use, filtering past human behavior data by categories such as season of the year,

region, or missing person profile. The user’s choice will indirectly affect the probability

distribution map generated by the Bayesian model.

The DistCreate component at this temporal scale can download terrain vegetation

coverage Landsat data directly from the USGS satellite image servers in real time when

provided with GPS coordinates. Then it generates a task-difficulty map based on the type of

vegetation in the specified region using a lookup table. For example, grassland is categorized

as sparse vegetation and marked as easy detection area; shrub is categorized as medium

vegetation and marked as medium detection area; evergreen forest is categorized as dense

vegetation and marked as difficult detection area. Therefore, this component only utilizes

vegetation density information when considering the difficulty level in sensor detection.

Figure 1.5 shows an example task-difficulty map generated by DiffCreate. It is a very simple

model, and we include it for completeness. Since it is modular, it can be easily extended or

replaced by a more advanced detection model where factors such as “seeability” [82] (lighting

condition, viewing angle, etc.) and video observer cognitive workload can be incorporated.

1.4.3 At the Between-Episodes Scale

At the between-episodes scale, a searcher might have additional case-specific informa-

tion (e.g, past experience, knowledge of the search area or weather conditions, or the profile
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Figure 1.7: An example probability distri-
bution map generated using the DistEdit
tool.

Figure 1.8: An example task-difficulty
map generated using the DiffEdit tool with
a satellite image of the search region over-
laid on top.

of the missing person) and would like to modify the general plan produced at the strategic

scale. Moreover, as search progresses, the search plan should change due to newly found

evidence (or the lack of it) from either the ground searchers or previous UAV flights. We

developed two autonomy management tools at this temporal scale that allow the user to

manage two types of information: areas of focus and task difficulty. Chapter 7 explains how

these two tools work in detail.

Searchers can use the DistEdit tool to modify a probability distribution map and

use the DiffEdit tool to modify a task-difficulty map generated at the strategic scale. Both

tools enable the user to view maps as 3D surfaces where a color map is applied for better

distinction (red means high probability area or high task-difficulty level and blue means low

vise versa). The user can use mouse and finger gestures to rotate/pan/zoom the respective

map and edit the shapes of the maps in 3D to incorporate information that the autonomous

components are unable to interpret. The user also has the option to overlay a satellite image

of the search area on top of the maps for better alignment.

In DistEdit the user can paint Gaussian distributions onto the probability distribution

map (in the form of a 3D surface) with a paintbrush tool to specify areas of focus. The mouse

click (or finger press gesture) position determines the mean of the Gaussian distribution;
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brush size determines the standard deviation (with a radius equivalent to three times the

standard deviation); and the duration of the click (or finger press gesture) determines the

scale (height) of the Gaussian distribution. Using this tool the user can add or subtract

Gaussian components to the map to create a mixture of Gaussians. The modified probability

distribution can be used later to prioritize tasks and plan UAV paths. By marking an area

as a high priority area, the searchers can indirectly manipulate the UAV to search the area

before other areas without the need to manually specify waypoints. Figure 1.7 shows an

example probability distribution map generated using the DistEdit tool.

In DiffEdit the user can specify task difficulty by using a paintbrush tool to paint on

the task-difficulty map with scribbles. The user can also use a lasso tool to specify a region

of irregular shape and then mark the region with selected task-difficulty level. By marking

areas as difficult, the user can indirectly tell the UAV to make multiple passes over these

areas to search more thoroughly. Figure 1.8 shows an example task-difficulty map generated

using the DiffEdit tool with the satellite image of the search region overlaid on top.

If the user does not like the probability distribution map or task-difficulty map

generated at the strategic scale, he or she can also use the DistEdit and DiffEdit tools to

create new maps from scratch. Both tools enable the searchers to add additional information

(especially the type of information autonomous components cannot interpret) to the intelligent

system, relying on UAV path-planning to use the information to search more efficiently.

1.4.4 At the Within-Episode Scale

At the within-episode scale, given a probability distribution map marking likely places

to find the missing person and a task-difficulty map indicating sensor detection probability

in relationship to the spatial representation of the search area, efficient UAV flight paths

need to be created quickly to support WiSAR operations. We have designed multiple path

planning algorithms [69, 72] so given a starting point, (optionally) an ending point, and a

desired flight duration, the intelligent path planning algorithms (IPPA) can generate flight
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Figure 1.9: Example UAV path generated for a complex multi-model distribution by a path
planning algorithm. (The blue arrow indicates the starting point.)

paths that approximate the optimal path (see Figure 1.9 for an example) to maximize the

probability of finding the missing person.

We present in [69] (Chapter 4 of the dissertation) multiple intelligent path planning

algorithms using Local-Hill Climbing, Potential Field, lawnmower patterns, and Evolutionary

Algorithm techniques. We evaluate the performance of these algorithms against simple

and complicated synthetic scenarios with the assumption of 100% detection probability

(no task-difficulty map is used). Then in [72] (Chapter 5 of the dissertation) we extended

these algorithms to support partial detection by introducing the task-difficulty map, and

also present two new (Top2 and TopN) algorithms, which utilize the Mode Goodness Ratio

heuristic we designed and enable a hierarchical search in the parameter space. We compare the

performance of these algorithms against Bourgault’s Algorithm [11] and the LHC-GW-CONV

(which we present in Chapter 4 and [69]) algorithm using three real WiSAR scenarios, and

the Top2 and TopN algorithms outperformed both algorithms. To improve computation

time of these algorithms, we implemented hierarchical coarse-to-fine search and hierarchical

desicion making. Algorithms were also parallelized to take advantage of multi-core processor

capabilities. More details of these techniques can be found in Appendix C.
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Figure 1.10: An example scenario of path planning using sliding autonomy: The UAV is
launched at point A. Because region 1 is a high priority area, the searcher lets the UAV
search for 20 minutes before arriving at point B, resulting in a longer flight path. Region
2 has low priority, so the searcher only gives the UAV 3 minutes before sending the UAV
to point C, resulting in a short flight path. Region 3 is a high priority area, so the searcher
gives the UAV 15 minutes. But the UAV also needs to reach Point D, the UAV retrieval
point, at the end of the allocated 15 minutes. A medium length flight path is generated to
meet the requirements.

When new evidence is gathered (from UAV aerial imagery or from ground searchers)

while the UAV is flying, the search plan might need to be changed in real-time. At this

within-episode scale, the information management tools DistEdit and DiffEdit previously

proposed can still be used to update the probability distribution and the task-difficulty

maps. This provides flexibility in autonomy management. Additionally, we have designed

an autonomy management interface, SlidingAutonomy, that enables the user to prioritize

search regions and manage the desired amount of the autonomous local search along two new

dimensions: changing the desired flight duration (temporal control) and adding constraints

(endpoints, spatial control).

The SlidingAutonomy tool allows a searcher to specify a starting point and (op-

tionally) an ending point on the terrain satellite image overlay. Then, by moving a slider, the

user can control how much flight time is granted, and the IPPA algorithms generate UAV

paths within the local region. Beginning from the ending point of the previous flight path
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segment, the searcher can plan the next path segment in the next search region. This way, the

searcher can specify the order of different search regions and let the algorithm determine what

paths the UAV should follow at each region. By setting flight duration (temporal constraints)

and adding end points (spatial constraints), the searcher tells the UAV information about

search priorities and at the same time, indirectly manages the local path planning based

on his/her own judgment of how much the UAV can be trusted to cover a given area well.

This autonomy management tool gives the user the flexibility of controlling the amount of

autonomy desired without the burden of creating the entire flight path manually through

waypoints. Figure 1.10 shows an example path depicting prioritized search regions and local

paths. As the user moves the slider in the SlidingAutonomy tool, the system provide

immediate visual feedback of what local path the system generates. This way, the searcher

can easily infer the causal relationship between his/her actions (changes in flight duration)

and the autonomous behaviors of the system (what path is generated).

We performed a user study to validate the usefulness of the approach. Experiment

results show that the human-autonomy team outperforms human or autonomy working

alone, reduces the human’s cognitive workload, and improves the human experience in the

human-autonomy interaction (Chapter 6 of the dissertation).

1.5 Dissertation Chapters

This dissertation consists of five papers, one of which is under review. This section

gives a brief description of each chapter.

Chapter 1 gives an overview of our proposed autonomy management approach and

provides an overall related literature review with respect to autonomy management approaches

and path planning for UAV in the context of Wilderness Search and Rescue. It explains how

all the components in our dissertation fit in the hierarchical structure and how they related

to chapters of this dissertation.

23



www.manaraa.com

Chapter 2, which was published in [71], presents autonomy integration guidelines we

identified (see Figure 1.1) when integrating UAV autonomy to the WiSAR system. The

paper emphasizes on how information management is an important attribute of an intelligent

system. It also describes in detail how the UAV path planning problem fits in the overall

intelligent system of using UAVs to support Wilderness Search and Rescue.

Chapter 3, which was published in [70], presents a Bayesian model that uses publicly

available terrain features data to help model lost-person behaviors. This approach enables

domain experts to encode uncertainty in their prior estimations and also makes it possible

to incorporate human behavior data collected in the form of posterior distributions. It also

enables the searcher to influence the probability distribution map generated by changing

prior beliefs in the transitional probabilities between terrain features and by selecting what

subset of past human behavior data to feed to the model.

Chapter 4, which was published in [69], explores several path planning algorithms and

describe some novel techniques in solving the problem of maximizing sensor (UAV onboard

video camera) coverage within a set time to support Wilderness Search and Rescue. The

task-difficulty map is not used and we assume 100% detection probability. Performance of

these algorithms are compared against typical WiSAR scenarios, and experiment results show

that these algorithms yield high quality solutions that approximate the optimal solution.

Chapter 5, which was accepted in [72], proposes a heuristic, Mode Goodness Ratio,

which uses a Gaussian Mixture Model to prioritize search subregions, and presents two path

planning algorithms (Top2 and TopN) that utilize the heuristic and hierarchically search for

effective paths through the parameter space at different levels of resolution. Performance of

the new algorithms are compared against two published algorithms in simulated searches

with three real search and rescue scenarios where both the probability distribution map and

the task-difficulty map are used. Results show that the new algorithms outperform existing

algorithms significantly when partial detection is considered, and can yield efficient paths

that yield payoffs near the optimal.
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Chapter 6, which is in preparation to be submitted to Journal of Human-Robot

Interaction, extends the autonomy integration guidelines we identified in Chapter 2 to include

collaborative agents when a human agent works together with the autonomous agent. It

proposes two additional dimensions for autonomy management: spatial constraints and

temporal constraints, and presents a new flavor of sliding autonomy where the human agent

in the human-autonomy team can assign different flight duration to the path planning

algorithms to plan path segments and use end points to manage search region priorities. A

user study was performed to validate the usefulness of the approach. Experiment results show

that this approach enables the human-autonomy team to outperform human or autonomy

working alone, reduces the human’s cognitive workload, and improves the human experience

in the human-autonomy interaction.

In Chapter 7 we describe the DistEdit and DiffEdit tools at the between-episodes

scale in detail, and demonstrate how the probability distribution map and the task-difficulty

map generated at the strategic scale can be modified using mouse and finger gestures to

incorporation additional information. The two tools can also create maps from scratch.

Chapter 8 concludes findings of the dissertation work and summarizes the contribution

of the dissertation. We also describe possible future work to extend the research at the three

distinctive temporal scales we proposed for our autonomy management approach.

In Appendix A we present the complexity analysis of the UAV path planning problem

and why a heuristic approach is preferred to both dynamic programming and reinforcement

learning approaches. Appendix B presents the full experiment results for Chapter 5. Ap-

pendix C describes how hierarchical decision making and hierarchical coarse-to-fine search

techniques are used in algorithm design. Appendix D explains the algorithm to identify modes

on a 3D surface, which is used in our Top2 and TopN algorithms. Appendix E describes

the sliding autonomy user study design in detail and presents the full experiment results for

Chapter 6.
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Chapter 2

Paper: Supporting Wilderness Search and Rescue with Integrated

Intelligence: Autonomy and Information at the Right Time and

the Right Place1

Abstract

Current practice in Wilderness Search and Rescue (WiSAR) is analogous to an intelligent

system designed to gather and analyze information to find missing persons in remote areas.

The system consists of multiple parts — various tools for information management (maps,

GPS, etc) distributed across personnel with different skills and responsibilities. Introducing a

camera-equipped mini-UAV into this task requires autonomy and information technology that

itself is an integrated intelligent system to be used by a sub-team that must be integrated

into the overall intelligent system. In this paper, we identify key elements of the integration

challenges along two dimensions: (a) attributes of intelligent system and (b) scale, meaning

individual or group. We then present component technology that offload or supplement many

responsibilities to autonomous systems, and finally describe how autonomy and information

are integrated into user interfaces to better support distributed search across time and space.

The integrated system was demoed for Utah County Search and Rescue personnel. A real

searcher flew the UAV after minimal training and successfully located the simulated missing

person in a wilderness area.

1Published in Twenty-Fourth AAAI 2010 (Association for the Advancement of Artificial Intelligence)
conference. Authors are Lanny Lin, Michael Roscheck, Michael A. Goodrich, and Bryan S. Morse.
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Capability Information Performance
Management Evaluation

Intelligence of
individual tools

Autonomy Flexibility Progress toward individual goal

Intelligence of
distributed system

Modularity Fusion (Communication) Collective progress/quality

Table 2.1: Integration challenges defined along two dimensions. Horizontal dimension:
attributes of intelligence. Vertical dimension: scale.

2.1 Introduction

Wilderness Search and Rescue (WiSAR) can be thought of as an intelligent system

designed to gather and analyze information to find and assist humans who are lost or injured

in remote areas such as deserts and mountains. The system consists of multiple parts —

various tools for information management (maps, GPS, etc) distributed across personnel who

have different skills. Using a camera-equipped mini-Unmanned Aerial Vehicle (UAV) to aid

search can provide aerial imagery of a search area with the benefits of quick coverage of large

areas, access of hard-to-reach areas, and lower cost than manned aircraft.

Introducing a UAV into the WiSAR system requires autonomy and information

technology that itself is an integrated intelligent system to be used by a WiSAR sub-team,

and this sub-team and associated technology must be integrated into the overall intelligent

system. This integration inevitably creates the need for new roles and responsibilities in order

to manage the UAV and the aerial imagery [1, 40]. The task of creating a useful technology for

supporting these roles is to make sure that these responsibilities are performed by appropriate

people at an appropriate time with a satisfactory level of performance. Doing this requires

the creation of algorithms that efficiently offload portions of responsibility to autonomous

algorithms, creating an intelligent distributed system that facilitates the coordination and

information management among roles. The need for efficiency creates the need to monitor

and evaluate the performance of the system as a whole.

In this paper we describe our efforts in developing autonomous algorithms and user

interfaces that integrate components of machine and human intelligence with the goal of
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making UAV technology useful to real searchers in WiSAR. Thus, this paper is consistent with

Drucker’s definition of automation as a “concept of the organization of work [28].” Intelligently

organizing work requires that we identify key elements of the integration challenges organized

along two dimensions: attributes of an intelligent system (capability, information, performance

evaluation) and scale (individual versus group); see Table 2.1. We then present component

algorithms that augment or supplement search responsibilities. Next we describe how

autonomy and information are integrated into user interfaces to better support distributed

coordination of multiple searcher roles across time and space with respect to the integration

challenges we identified.

Validating an integrated system is always difficult. The goal of our research is to

develop technology that provides help to real searchers; therefore, we believe a good way

to validate our integrated system is to put it through a test in a real-world environment in

front of real users. We summarize the experience of a recent field demo for Utah County

Search and Rescue team representatives, where a real searcher acted as the UAV operator in

a simulated search and rescue mission after minimal training.

2.2 Related Work

The goal of our research is to support fielded missions in the spirit of Murphy’s

work [17]. UAV technology has emerged as a promising tool in supporting WiSAR [9, 83].

The UAV technology is an intelligent system with the integration of many component

autonomous algorithms and user interfaces (related work for these components are referenced

in their relative sections). Integration at this level requires tremendous effort. For example,

building robots (GRACE and Spartacus) that are capable of attending a conference [75, 107]

required the integration of many technologies (e.g., localization/navigation, gesture/face

recognition, and speech recognition/generation) and multiple modalities (e.g., mobility, vision,

audition, and reasoning).
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Figure 2.1: A screenshot of the UAV operator interface showing the position/orientation of
the UAV, the orientation of the camera, and the projected video. (Top right: The UAV used
in our research.)

To integrate the UAV intelligent system into existing WiSAR practices — which

we argue is an intelligent system by itself [104] — creates additional challenges. Salas and

Fiore [100] provide great insights on challenges across people and machines, and across time

and space in distributed teams. Sycara and Lewis [118] also asked the questions: 1) can a

software agent perform the task? and 2) can the agent’s assistance contribute toward team

performance? Tso et al. [127] identified that integrating a UAV into the search task creates

at least two roles: a pilot that controls the UAV and a sensor operator that analyzes the

sensor outputs, and lessons from other search-related domains [29] show that multiple roles

are required and these roles can be supported by autonomy algorithms and user interface

technologies. These findings motivate and guide our research in developing UAV technology

to support WiSAR operations.
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2.3 UAV Overview

UAVs used in our research have wingspans of 42-50 inches, weigh approximately 2 lbs,

and use lithium battery-powered propellers (see Figure 2.1a). The airframes are designed so

each UAV can stay aloft for up to two hours and travel at approximately 12-15 meters per

second. The onboard sensors include three-axis rate gyroscopes, three-axis accelerometers,

static and differential barometric pressure sensors, a GPS module, and a video camera on a

gimbaled mount. An autopilot, designed by the BYU MAGICC lab [5], enables roll and pitch

angle stabilization, attitude stabilization, altitude control, and waypoint following. The UAV

uses a 900 MHz radio transceiver for data communication and an analog 2.4 GHz transmitter

for video downlink. The typical operating height above ground is 60–100 meters so the UAV

can avoid trees and slight terrain variations while still provide enough resolution so a human

form can be discerned in the video [41].

2.4 Integration Challenges

We organize integration challenges along two dimensions: attributes (capability, infor-

mation management, and performance evaluation) and scale (individual tool vs distributed

system), as shown in Table 2.1. We assert that an intelligent system should display several

attributes associated with intelligence across multiple scales. Capability pertains to the

identification and development of specialized behaviors. Information management focuses

on how information is presented, handled, and shared. Performance evaluation deals with

monitoring the health of the system or progress toward the intended task goal. In this

section we use this taxonomy to describe components of the UAV technology in the context

of WiSAR.

The individual tools were designed partly in response to a cognitive task analysis

conducted on the WiSAR domain to inform the design of UAV technology [1].
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The analysis identified four primary search tactics used in WiSAR: hasty search,

constrained search, high priority search, and exhaustive search. Also, observations from several

user studies [22] show that the best perspective (e.g., chase, north-up) for detecting and

localizing a target depends on the type of search and the type of distribution (likely places to

find the missing person). These findings suggest that multiple control modes, path planning

methods, and perspectives are needed to support various search tactics and scenarios. These

are examples of the capability for individual tools. Since autonomous algorithms can replace

or supplement searcher responsibilities, a wide range of capability is desired.

For the WiSAR system, the cognitive task analysis also identified two key WiSAR

subsystems; information acquisition and information analysis. Combining this result with

observations from past field trials, we see four roles emerge when a UAV is integrated into

the search [41]. UAV operator : responsible for guiding the UAV and the gimbaled camera

to various locations and monitoring the UAV; video analyst : responsible for scanning and

analyzing imagery to detect potential clues; mission manager : responsible for managing

the search and prioritizing efforts based on information obtained; ground searcher : (when

supporting the UAV) responsible for investigating potential clues found in aerial imagery.

Each role consists of a grouping of responsibilities. The task of creating useful technology for

supporting these distributed roles is to make sure that these responsibilities are performed

by appropriate people at an appropriate time with a satisfactory level of performance. Since

people may take on (partial) responsibilities of other roles, the video analyst and the UAV

operator might share responsibilities, these behaviors suggest that capabilities of individual

systems should be modular to mix and match across roles. Modularity is a requirement

for an intelligent distributed system – it is the adaptable chunking of responsibility and

capability.

Flexibility, in information management, is the ability to appropriately match ca-

pability to task according to the information available to the operator. The cognitive task

analysis indicated that WiSAR search is an iterative process of gathering, analyzing evidence
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and planning for gathering more evidence, where probability refinement plays an important

part during search. The analysis also identified that searches require considerable human

judgment, especially as new evidence is collected. These findings suggest that tools and

autonomy need to be flexible so they can be interrupted, temporarily aborted, and possibly

resumed later. For example, if an object is spotted in the video, the UAV operator stops

the current flight pattern and loiters around the Point Of Interest (POI) to gather more

information. Once the UAV operator aborts the loiter mode, the UAV automatically resumes

the previous flight pattern to continue to gather information.

For a distributed system, Information Fusion is an important element that efficiently

combines and presents information from various sources to a user and also shares information

among multiple users. For example, the user interface for the UAV operator includes the

terrain map, an icon indicating the position and attitude of the UAV, an integrated video feed

projected onto the terrain map showing the direction of the gimbaled camera, and various

meters showing UAV status (e.g., speed, altitude, battery life); see Figure 2.1. Another

example is a video analyst helping to annotate clues in video imagery, and communicating

the data to the mission manager who can update the search plan accordingly.

For each individual tool, the ability to evaluate the quality and the progress toward

the individual goal can be useful and represents the importance of performance evaluation.

A coverage map, for example, improves the UAV operator’s situation awareness of how well

an area has been covered. Morse et al. [82] defined two see-ability metrics (described in the

See-ability section). An instantaneous see-ability evaluation helps the video analyst get a

sense of the quality of a single frame of video. As for the distributed system, an overall,

or group quality evaluation is more appropriate. A mission manager might want to know

the collective see-ability to understand how well the terrain is seen by all frames of video or

combined coverage of the UAV and ground searchers.
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In the following three sections we match components of our UAV system to the three

attributes (columns) of our intelligent system taxonomy and show how they support various

searcher roles at the right time and the right place.

2.5 Autonomy Components

This section presents a wide breadth of autonomy components currently in place

to support searcher roles and responsibilities. They map to the Capability column in our

taxonomy (Table 2.1). The modular design allows mix and match of autonomy components

to support the distributed system. Here we use the term “low-level autonomy” to describe

components that only involve simple math calculations in contrast to the term “advanced

autonomy,” where complex algorithms and interrelationships are required.

2.5.1 Low-Level Autonomy

Autopilot:

Pitch/roll/yaw and altitude stabilization, attitude controls, and waypoint following.

Deploy and retrieve:

Two auto launch modes (take off to waypoint, spiral take off) and two auto land

modes (rally land, deep stall).

Gimbaled camera control:

A point can be set on the terrain map so the gimbaled camera constantly aims at the

point independent of the UAV’s flight path.

Path planning:

Simple flight patterns include spiral, lawnmowing, and Zamboni.
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Figure 2.2: Left: a posterior predictive distribution at 200th time step generated using the
Bayesian model. Middle: a multimodal distribution used to test path planning (arrow marks
starting point). Right: path generated using Intelligent Path Planning.

Safety:

If no waypoint is set or after reaching the end of set path, the UAV loiters around last

waypoint. If the UAV loses communication with the base, it automatically returns to base

and loiters.

2.5.2 Advanced Autonomy

Distribution Generation:

A Bayesian model that incorporates past human behavior data and publicly available

terrain data (topography, vegetation, and elevation) is used to automatically generate a

posterior predictive distribution of the likely places of finding the missing person [68]. The

Markov chain Monte Carlo Metropolis-Hastings algorithm generates a temporal distribution

showing how the distribution changes over time (Figure 2.2). Given enough time, the

distribution converges to a static state. The resulting distribution can be used by the search

manager to prioritize search resources and develop search plans. It can also be used by the

UAV operator for automatic path planning to maximize accumulated probability for a fixed

flight duration.
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Path planning:

Two advanced path planning algorithms are described here: Generalized Contour

Search [41] and Intelligent Path Planning [69]. The ability to control the gimbaled camera to

aim at a target point while orbiting enables a Generalized Contour Search path planning

algorithm. A queue of target points that follow the contours of the distribution of the missing

person’s likely locations can be created from which the algorithm interpolates (bicubic

interpolation) and resamples at uniform distances. Lawnmower and spiral paths naturally

emerge from the algorithm for uniform and Gaussian distributions respectively, and they

are the optimal paths. It is also possible to use the algorithm to follow the contours of

steep terrain by aiming the camera out the side of the UAV. The second path planning

algorithm aims to maximize the accumulated probability for the path generated given a

distribution, a starting point (optionally an ending point), and desired flight time. The

camera footprint traverses a grid of probability nodes (enabled by the gimbaled camera) while

the UAV approximates the path generated. Near optimal flight paths are generated using

an evolutionary approach, where seed paths are generated using various hill-climbing and

potential fields algorithms. Simulation results show the algorithm works well with a variety

of probability distributions, including complicated multi-modal distributions (Figure 2.2).

These advanced algorithms enrich the autonomy tool set for the UAV operator and can

potentially be useful for the high priority search and exhaustive search techniques when

systematic coverage is desired.

Video mosaicing:

The term mosaic means to “stitch” together multiple frames of video of a static

scene from a moving camera [121]. A real-time temporally local mosaic technique [81] was

developed using Harris corner detector to identify feature points and then using RANSAC [33]

to estimate the Euclidean transformation between each pair of frames. User studies using

simulations and experience from field trials show that small mosaics of only the last few
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Figure 2.3: Example of a video mosaic with an annotation (indicated by a red circle).

seconds of video is sufficient to provide both increased opportunity for detection and increased

sense of relative spatial relationships. Figure 2.3 shows an example of the local mosaic view

where the same object is only visible in a few frames in original video but is visible for nearly

one hundred frames using the technique.

Anomaly detection (under development):

A color anomaly detection algorithm is currently under development that adapts

hyperspectral anomaly detection methods to find man-made objects in wilderness scenes.

This algorithm adds another autonomy capability to the tool set and can recommend points

of interest in the video imagery to the video analyst, potentially reducing mental workload.

We mention this component in this paper for completeness.

2.6 User Interfaces

In this section we describe the user interfaces developed to support various searcher

roles with a focus on explaining how we integrate autonomy components (including control

modes) and human intelligence. Interface techniques provides control flexibility with current
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information state, and information sharing and fusion improves the efficiency of the overall

distributed system. They map to the Information Management column in our taxonomy

(Table 2.1).

The UAV software consists of several components. Phairwell is the augmented

virtuality interface used to “fly” the UAV (see Figure 2.1). The Wonder Server consists of

central management software for capturing, storing, and retrieving video, UAV telemetry,

annotations, and other related information. Finally, the Wonder Client is the GUI used by

the video analyst and mission manager and provides video mosaic and annotation capabilities.

Video and telemetry data are streamed from the Wonder Server.

Phairwell for UAV Operator: The UAV operator’s main responsibilities include assigning

the UAV a specific task, ensuring that it is properly performing that task while monitoring

the UAV’s “health and safety,” monitoring the live video, and interacting with the UAV

when needed (e.g., once the video analyst spots a suspicious object, a change in the plan is

made, or when the UAV needs attention).

Phairwell supports four flight modes while searching: manual, carrot and camera,

flight plan, and loiter now. These modes represent autonomous behaviors that help the UAV

operator efficiently assist the video analyst. Manual mode commands the UAV to match

a course and altitude set using the arrow keys. Carrot and camera allows the operator to

direct the UAV and camera with the mouse. Flight plan mode commands the UAV to fly

waypoints that the operator selects manually or that are generated automatically by one or

more search patterns. The loiter now mode interrupts the UAV’s current behavior so the

operator or UAV team can briefly ignore the UAV.

While directing the UAV is important, the primary goal is to manipulate the camera

efficiently to provide the video analyst with the needed video. The speed of the UAV coupled

with slow user response makes it impossible for the operator to manually track specific ground

objects, a commonly required task. Instead, the UAV operator can select a terrain location

in Phairwell and have the UAV fix the camera on the location. The UAV autonomy can
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maintain this lock, even when the UAV is turning rapidly or knocked about by gusts of wind.

This allows the UAV operator to easily adjust the camera according to the needs of the video

analyst.

Although the UAV’s autonomy allows it to fly a predefined flight plan, the UAV

operator must often interrupt the autonomy and then resume it later. Phairwell allows

the UAV operator to effortlessly change control modes, perform some task, and resume the

previous control mode. This capability has been used routinely when the UAV is flying a

search pattern and the video analyst sees something and wants the UAV to go back and take

a closer look. This specific autonomy is described more fully in the next section.

Wonder Client for Video Analyst: The Wonder Client interface serves as the video

analyst’s primary tool. They have the flexibility to select between either the live video or

mosaiced views. The interface also provides tools to modify the brightness, contrast, and

other image properties of the live video or mosaic, which often need to be adjusted to make

objects more recognizable.

The video analyst also uses the Wonder Client to annotate the video. Annotations

mark objects in the video with a timestamp and user notes so that they can be found quickly

in the future. An example can be seen in Figure 2.3. When an annotation is placed on the

video mosaic, it is tied to the geo-referenced coordinates of the underlying terrain. Therefore,

annotations marked on previous video frames are automatically displayed on future frames,

ensuring that the video analyst does not repeatedly identify the same object while also

providing an efficient means of visually tracking the object.

The video analyst can also indicate any geo-referenced location in the video as a POI

that they want to immediately return to and investigate. The system then automatically

communicates this information to Phairwell, giving the UAV operator the option of letting

the autonomy redirect the UAV to investigate.

Wonder Client for Mission Manager: The mission manager is responsible for assessing

what has been searched and how well. This information is then used to plan further search
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efforts. While assessing ground searcher coverage is a common practice, UAV-assisted search

adds a new and challenging aspect to this task. A coverage map showing the quality of the

search is generated from the collective see-ability estimates to provide the mission manager

with a complete view of the terrain the UAV video covered.

The Wonder Client gives the mission manager access to all the video analyst’s POIs

and annotations. The mission manager can then review the POIs and classify them as worth

investigating or not. Those that are worth investigating are prioritized and placed in a

pending search queue. The mission manager then assigns the UAV-team or ground searchers

to investigate these points. Once the POI is located, the findings are reported back to the

mission manager for assessment. However, investigations executed by the UAV-team will

lead to this whole process being repeated.

For Ground Searchers (under development): Successful search requires that ground

searches quickly and thoroughly search their assigned area. We have begun development

of a system that utilizes the concept of see-ability to support ground searchers in these

efforts. A portable GPS device will be used to display a see-ability map, providing a visual

representation of the thoroughness and quality of their search based on what they should

have seen.

Communication between ground searchers and the UAV-team has proven limited and

difficult. This same portable device will be used to bridge this communication gap. For

example, when a ground searcher is assigned to investigate a POI, instead of radioing the

GPS coordinates, the device will automatically receive the coordinates, overlay the UAV

aerial imagery with the annotations, and provide the searcher with directions to the location.

2.7 See-ability Metrics

The “see-ability” metric [82] was developed to address the challenge of understand-

ing the search-related quality given by UAV video. This involves two different measures:

instantaneous see-ability measures the quality of a single video frame while collective see-
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ability measures the overall quality provided by all video frames. They map directly to the

Performance Evaluation column in our taxonomy (Table 2.1).

The instantaneous see-ability computation uses the semi-accurate camera’s location

and pose information, terrain models, satellite imagery and computer vision techniques to

geo-register each frame of video. The geo-registered frame is used to estimate the resolution

with which each point in the video is seen. This metric could provide information about the

quality of the video coverage for the video analyst. A user study showed that there was a

moderately strong correlation between the instantaneous see-ability estimates and measured

detection rates [82]. Collective see-ability is determined by the number of times each point

has been seen, from what distance, and from which and how many different angles. This is

done by combining all of the instantaneous see-ability estimates available for a single point

on the terrain. This metric provides the mission manager with information about the overall

quality of the entire search.

2.8 Demonstration

We believe a good way to validate our system is to demonstrate its usability in front

of real searchers in a real-world environment. In the past several years, many field trials were

operated by students pretending to be searchers. A demo to real searchers focuses more on

the intended intelligence of the system. That led to a field demo on November 21, 2009 for

representatives of the Utah County Search and Rescue team in a remote wilderness area in

Elberta, Utah.

Three searchers participated in the demo. One searcher, R, acted as the UAV operator

and flew the UAV in a simulated search and rescue mission while the other two searchers

observed the mission and inquired about the capabilities of the system, the system structure,

and the operation protocols. Professors and students of BYU volunteered as video analysts

and ground searchers. R had received 30 minutes UAV operator training and also practiced

in a simulated environment for a few hours. The mission objective was to locate a simulated
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missing person (a dummy placed in the wilderness) as quickly as possible in a team effort

(UAV operator, video analyst, and ground searchers) utilizing the UAV technology. The

responsibilities of the mission manager were split between the UAV operator and the video

analyst. The missing person was successfully identified in the mosaic view, and the GPS

location was radioed to the ground searchers, who successfully located the missing person.

The entire mission completed in under 35 minutes.

The anomaly detection autonomy component and the GUI for ground searchers

were not fully implemented and, therefore, were not included in the demo. Other than

the distribution generation, intelligent path planning, and see-ability metric components

(implemented and validated but not fully integrated), all other technologies described in this

paper were available and functional.

We conducted an in-depth interview with R several weeks after the demo. Here we

share only a portion of his feedback due to space limitations. R thinks the UAV operator

interface is “very easy to pick up” and 30 minutes of training was plenty. His reason for

practicing in the simulated environment was to explore and avoid silly mistakes. A few new

features were available at the demo, but he was able to learn them quickly. He liked the video

feed inside the UAV operator GUI because it helped him align the map with the video. One

interesting incident was that he was able to identify the simulated missing person before the

video analyst, probably the result of his trained eye. He also suggested that including ruler

type tools in Phairwell could help him get a better perspective of the map. Feedback from

his fellow searchers included comments such as “That was cool!” and “This could work!”

Another key benefit of the demo is that it raises interest from the WiSAR community

on technologies that can potentially assist WiSAR operations and opens the door for more

direct collaboration between the WiSAR community and academic researchers in the near

future.

41



www.manaraa.com

2.9 Conclusions and Future Work

To make UAV technology useful for WiSAR requires the integration of an intelligent

UAV system into the existing intelligent WiSAR system. The autonomy components of the

UAV technology also need to be integrated to support both individual searcher roles and

the distributed system as a whole. We analyze and identify key elements of the integration

challenges along two dimensions: attributes of intelligent system and scale. Component

technologies are presented and matched to responsibilities of different searcher roles. Then

we describe how components of autonomy are integrated into the user interfaces to support

the integration of human intelligence for each search role in order to address the integration

challenges we identified. Finally we validate the usefulness of the integrated system via a

demonstration to Utah County Search and Rescue team representatives. A real searcher

acted as the UAV operator and successfully located the simulated missing person using the

intelligent UAV system through a team effort. Positive feedback from real searchers about

the demonstration give us high hopes that research efforts in designing the UAV intelligent

system can really help real WiSAR operations in the near future.

Immediate future work includes implementing and integrating system components

identified in this paper but not included in the demo. Research is also planned for providing

more flexibility for the existing tool set (e.g., interactive distribution modification and sliding

autonomy for intelligent path planning). Long term goals focus on better integration of ground

search situation awareness to improve system situation awareness and overall planning.
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Chapter 3

Paper: A Bayesian approach to modeling lost person behaviors

based on terrain features in Wilderness Search and Rescue1

Abstract

In Wilderness Search and Rescue (WiSAR), the Incident Commander (IC) creates a proba-

bility distribution map of the likely location of the missing person. This map is important

because it guides the IC in allocating search resources and coordinating efforts, but it often

depends almost exclusively on prior experience, subjective judgment, and a missing-person

profile,. We propose a Bayesian model that uses publicly available terrain features data to

help model lost-person behaviors. This approach enables domain experts to encode uncer-

tainty in their prior estimations and also makes it possible to incorporate human behavior

data collected in the form of posterior distributions. These distributions are used to build a

first-order Markov transition matrix for generating a temporal, posterior predictive probability

distribution map. The map can then be augmented as desired by search and rescue workers

to incorporate additional information. Using a Bayesian χ2 test for goodness-of-fit, we show

that the model fits a synthetic dataset well. This model also serves as a foundation for a

larger framework that allows for easy expansion to incorporate additional factors, such as

season and weather conditions, that affect the lost-person’s behaviors.

1Published in CMOT 2010 (Computational and Mathematical Organization Theory) journal. Authors are
Lanny Lin, and Michael A. Goodrich.
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3.1 Introduction

In the priority search phase2 of Wilderness Search and Rescue (WiSAR), a probability

distribution map for the likely place to find the missing person is created using terrain

features, a profile of the missing person, weather conditions and subjective judgment of expert

searchers (see [60]). The Incident Commander (IC) uses this map to allocate resources, to

direct the search, and to coordinate rescue workers. Search and rescue resources are typically

limited, meaning only a small portion of the area can be covered in the first few hours of

the search. However, [104] and [120] show that as time progresses, the survivability of the

missing person decreases and the effective search radius increases by approximately 3km/hour.

Therefore, areas with high probabilities are searched first in hope of finding the missing person

quickly. The probability distribution map created by the IC can also be used by manned or

unmanned aerial vehicles for path planning purposes, thus facilitating effective aerial search.

The quality of the probability distribution map is critical to the WiSAR operations and can

mean the difference between life and death for the missing person.

We propose a Bayesian approach in modeling lost-person behaviors to generate such a

probability distribution map automatically. The search and rescue workers can then augment

this base map to incorporate their own beliefs to generate the final probability distribution

map. We argue that using the Bayesian approach to automatically generate the map can be

beneficial in the following ways:

1) The Bayesian approach easily allows the inclusion of prior data (in the form of

subjective judgment of the SAR volunteers), the profile (travel direction and dispersion

characteristics) of the missing person, etc.

2) This approach allows the search and rescue workers to naturally incorporate their

uncertainty by specifying a mean and a variance, which we will then incorporate into a Beta

distribution to facilitate a robust Bayesian model.

2Four qualitatively different types of search strategies are used in WiSAR: hasty search, constraining
search, priority search, and exhaustive search. See [41] for more details.
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3) This approach allows the incorporation of actual human behavior data collected to

generate posterior beliefs.

4) The map generated using the Bayesian model means that the search and rescue

workers do not have to build the probability distribution map from scratch and it reduces

the chance that the search and rescue workers might overlook a certain area that should have

been allocated higher probability.

5) The probability distribution map can be dynamically updated as time progresses.

Assuming a first-order Markov process, the Bayesian model can easily incorporate the time

element and thereby allow the search and rescue workers to observe how the proposed

probability distribution map changes over time, especially as information is collected. Such

capability can be useful if the search and rescue operation takes an extended period of time.

Many factors affect how the probability distribution map might turn out. Examples

include the season of the year, the weather conditions, the profile of the missing person (age,

gender, professions, intention, etc., which translate into direction, distance, and dispersion

of travel), and the terrain features of the area. The Bayesian model proposed here mainly

focuses on the terrain features, specifically, the topography type, vegetation coverage, and

local slope. However, the model is designed so that it can be easily extended to take other

factors into consideration.

The proposed Bayesian model has the following components: The search area is first

discretized into a honeycomb pattern hexagonal tessellation where each cell represents a

state with topography type, vegetation type, and elevation information, which are treated

independently. Local slope can then be calculated using elevation differences between the

current cell and its neighbors. Expert opinions in human behaviors, experience in past search

and rescue incidents, and past statistical data are incorporated to specify the terrain feature

transition probability from one topography type (or vegetation or slope, respectively) to

another in the form of a mean and a variance. Using samples generated from such priors,

a state transition matrix is built to specify the transition probabilities from each state to
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all other states, which can be used to generate the prior predictive probability distribution

map for any given number of time steps. Data in the form of GPS track logs3 are then

incorporated into the model as observations so posterior beliefs can be calculated. Using the

posterior beliefs, a new state transition matrix is built and used to generate the posterior

predictive probability distribution map for any given number of time steps.

The rest of paper is organized as follows: In Section 2 we discuss related work. We

describe the proposed model in detail in Section 3 and analyze the experiment results in

Section 4. In Section 5 we evaluate the model using the Bayesian χ2 test for goodness-of-fit

by [55]. Section 6 presents conclusions and future work.

3.2 Related Work

Many search and rescue researchers have worked on analyzing historical search and

rescue cases and have tried to understand and explain missing person behaviors. [104] re-told

accounts of various rescue situations by the authors and others to describe wilderness search

and rescue techniques and lost-person behaviors. [49] discusses a number of reorientation

strategies such as random traveling, direction traveling, route sampling, direction sampling,

backtracking, using folk wisdom, and staying put. [120] describes how to use mathematical

models to calculate the probability of detection, probability of area and probability of success.

He also describes an example search mission. In [119], he also presents a series of case studies.

[48] tabulate crow’s-flight distance traveled and dispersion of travel by different categories of

wilderness users using data from between 1987 and 1996 for 162 lost-person incidents near

Peter Lougheed Provincial Park in Alberta, Canada. [60] described the International Search

& Rescue Incident Database (ISRID), which contains 50,692 SAR incidents at the time the

book was written. Chapter 8 of the book presents important statistical content of lost person

3A GPS (Global Positioning System) tracking unit can log the position of the device at regular intervals
with time stamps. The sequence of these position points make up a GPS track log.
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behavior by subject categories. Conclusions drawn from these publications are good resources

for specifying priors with our proposed model.

As more geographical information is available to the public via the Internet, researchers

have begun looking at systematically utilizing such information for search and rescue applica-

tions. [31] discusses the application of GIS (Geographic Information System) to manage

the search for a missing autistic youth in the Dolly Sods Wilderness area of West Virginia.

GIS provides a platform to integrate data from various sources, allowing the search to be

segmented into probability regions based on statistical analysis and a behavioral profile of

the missing subject. [111] present a case study about a plane crash near Kutahya, Turkey

and demonstrate how probability distribution maps can be generated that shrink the incident

area and enable the search team to reach the area in an optimal way. Both papers show great

examples of how to use GIS information to build probability distribution maps that can be

used to facilitate search and rescue operations. However, they do not allow the experts to

specify their uncertainty and also do not incorporate existing human behavior data into the

model in a meaningful way.

Once the probability distribution map is generated, computer algorithms can take

advantage of it to perform path planning for Unmanned Aerial Vehicles (UAV). [41] present

field reports on how UAV technology can be integrated into existing WiSAR teams. In [11]

and a series of related papers, Bourgault et al. describe how to use a Bayesian model to

create paths for one or multiple coordinated UAVs to maximize the amount of probability

accumulated by the UAV sensors. [12] also include scalable collaborative human systems in

the loop and generated paths for human operators. [69] present a series of path-planning

algorithms for a UAV used in WiSAR operations, which yield high-quality solutions that

approximate an optimal path using a given probability distribution map.

Bayesian modeling has been used in many aspects of human behavior modeling. [123]

proposes a Bayesian model for human concept learning that gives precise fits to human behavior

data. [43] present a Bayesian-based approach to extract a human player’s strategic behavior
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and movement patterns in interactive computer games. [87] describes a Bayesian computer

vision system for modeling and recognizing human interactions in a visual surveillance task.

[101] describe a method that uses correspondence between a model of human choice and the

choices made by the Markov chain Monte Carlo (MCMC) algorithm.

3.3 Terrain-Based Bayesian Model

In this section we describe the proposed Bayesian model in detail. First we present an

overview of the model and explain how Bayes’ Theorem is used to update beliefs.

3.3.1 Model Overview

The Bayesian model has two distinctive parts. The first part uses previously collected

human behavior data (observations of how people actually traveled in various terrains) to

update prior beliefs on how the lost person would transition between different terrain features.

The update is achieved using the Gibbs Sampling and Metropolis-Hastings flavor of the

MCMC class of algorithms shown in [35]. The second part then uses posterior beliefs (updated

beliefs from first part) to construct a state transition matrix based on the terrain features

of the search area. Using a generative approach and assuming a first-order Markov process,

we can predict how the lost person might have traveled from the point last seen as time

progresses.

In the first part of the model, we ask domain experts to specify the probability that the

lost person would travel from one terrain feature to another. The probability is a continuous

distribution and we only ask for transitional probabilities within the same category of terrain

features. Therefore, specifying the probability of traveling from topography feature “plain”

to topography feature “hill” would make sense while from topography feature “plain” to

vegetation density feature “sparse” would not.

We use θi to denote each probability distribution specified by domain experts, meaning

each θi is a prior belief and a parameter in the model. θ represents a vector containing all the
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parameters of the model. We also use F to denote the set of terrain features for the search

area. Following standard Bayesian notations, we use π(θ) to denote the joint prior belief

of the entire parameter space, and f(z|θ, F ) to denote the likelihood that the lost person

traveled toward various directions given the terrain feature based transitional probabilities

and the known terrain features. If we already have multiple observations of what directions a

lost person traveled given various terrain features, by applying Bayes’ Theorem, we can write

the posterior beliefs of our parameters:

π(θ|z) =
f(z|θ)π(θ)∫ 1

0

f(z|θ)π(θ)dθ

(3.1)

where z is a vector containing multiple observations. Here we can drop F from our equation

because F is known.

In the second part of the model, since we already have the posterior beliefs (in

continuous form) of how the lost person would transition from one terrain feature to another,

we can sample from the posterior beliefs and then construct a state transition matrix based

on the terrain features of the search area. Each state is a cell in a hexagonal tessellation, and

each row of the state transition matrix consists of the transitional probabilities of traveling

from one cell to every cell in the tessellation (including itself). Therefore, the state transition

matrix is an n× n matrix where n is the total number of cells in the tessellation, or the total

number of possible states.

At the time when the lost person was last seen (indicated by the point last seen), the

probability of the lost person being in the cell containing the point last seen is 1. At the

next time step, with the help of the state transition matrix, we can compute the probability

of the lost person being in each cell of the tessellation. Using the same method, we can

predict the probability distribution of where the lost person will be at any time interval

t, where t is the number of time steps since the time the lost person was last seen. This
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probability distribution is called the posterior predictive probability distribution, and this is

the probability distribution map we really care about in Wilderness Search and Rescue.

Note that in each time interval, we re-sample from the posterior beliefs (from the

first part of the model) because they are continuous probability distributions. It is also

worth mentioning that if we build the state transition matrix by sampling from prior beliefs

then we are not taking advantage of the observed human behavior data. The corresponding

probability distribution of where the lost person will be at time interval t is called the prior

predictive probability distribution.

3.3.2 Hypothetical Scenario

To illustrate how the model works, it is helpful to use an exercise scenario as an

example. Figure 3.1 shows the satellite imagery of an area by Payson Lake in the Uinta

National Forest, Utah, obtained through Google Earth by specifying longitude and latitude

between (39◦55’56.67” N, 111◦38’27.82” W) and (39◦55’45.58” N, 111◦38’05.68” W). The lake

is in the northwest corner, and there is a campground in the southwest region. The three

small plots in Figure 3.1 are generated using real terrain feature data downloaded from the

USGS web site4 using the exact longitude and latitude range. The topography dataset was

discretized into three types: lake, plain, and hill. The vegetation dataset was also discretized

into three types: sparse, medium and dense. Let us imagine a 14-year-old scout is reported

missing. He was last seen in the forest on the hill (marked by the white arrow in Figure 3.1) 3

hours and 20 minutes ago, where he took off on his own after a quarrel with his fellow scouts.

Now let us assume we have some track log data from past scouts who also became lost in

the area but happened to be carrying a GPS unit. The objective is to build a probability

distribution map for the area by combining our knowledge of the terrain features with domain

experts’ estimations of how the child might travel given the terrain features and historical

human behavior data.

4http://seamless.usgs.gov/index.php
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Figure 3.1: Satellite imagery of area by Payson Lake, Utah together with relative topography,
vegetation, and elevation data downloaded from USGS web site. The topography and
vegetation plots are discretized into (lake, plain, hill), and (sparse, medium, dense) respectively.

3.3.3 Hexagonal Tessellation Discretization

The first step in the model is to discretize the area into a hexagonal tessellation as

shown in Figure 3.2. The reason we use a hex tessellation is because the hex tessellation

ensures the distance from the center of one cell to the center of any neighboring cell is always

the same. The width of each hex cell is 24 meters. We picked this number because we believe

such a granularity allows us to have enough detailed information about the terrain features

without going into excessive details to burden the amount of computation. Future work

should systematically explore how changing this granularity affects the tradeoffs between

computational complexity and precision. In a real WiSAR scenario, the width can also be

determined by the level of detail available for the terrain feature data at hand.

The resulting tessellation is a 16× 38 tessellation with 608 distinct states. Using the

terrain feature data we have, each state is really a 3-tuple of (topography type, vegetation

type, elevation). When we transition from one state to another neighboring state (including
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Figure 3.2: Hexagonal discretized tessellation showing past historical data (the path marked
by the white cells in the main image) together with topography, vegetation, and elevation
information in hexagonal tessellation.

remaining in the same state), we can identify whether the topography type and vegetation

type change. By calculating the elevation difference between the two states, we can find out

whether the local slope is going uphill, downhill, or neither. Here we decide whether there is

a local slope by calculating the angle of the elevation difference. If the difference is more than

20 degrees, we mark it as a local slope. We subjectively picked the threshold of 20 because

we want to emphasize the extra effort of going uphill (as might be representative of a typical

missing person such as a 14-year-old scout). Future work should systematically evaluate the

impact of this threshold on usefulness of the probability distribution function.

3.3.4 Model Representation

In this sub-section, we define the Bayesian model in terms of the prior, the state

transition, and the likelihood, and discuss each component in detail.
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The Prior

With the knowledge of past WiSAR incidents and expert opinion on human behavior,

we can ask domain experts to specify their prior beliefs on how the missing person would

behave with respect to different terrain features (e.g., a transition from a medium vegetation

type to a dense vegetation type). For example, since we have three different topography types,

we need a 3× 3 transition matrix as shown in Equation (3.2), representing the probability of

transitioning from one topography type to another. The rows and columns are both indexed

by the different topography types, and it is possible to remain in the same topography,

yielding 
T ′00 T ′01 T ′02

T ′10 T ′11 T ′12

T ′20 T ′21 T ′22

 (3.2)

For example, T ′00 is the transitional probability for remaining in the lake type topography, and

T ′00 is a number between 0 and 1 inclusive. The definition of the transition matrix requires

that the values in each row of the matrix sum up to 1.

However, we would also like to enable the domain experts to incorporate uncertainty

in their beliefs. Therefore, for each topography transition, instead of a number, a continuous

Beta distribution is used, and a probability value, such as T ′00, can be generated by sampling

from the Beta distribution. We use a Beta distribution because the domain of a Beta

distribution’s probability density function is x ∈ [0; 1], which matches the parameter space

of probability values. The curves of the Beta distribution also have the shape we desire

because the mean and the mode of the curve can shift between 0 and 1 with various variances

depending on what parameters we pick (illustrated in Figure 3.3). To specify uncertainty,

for each topography transition probability, we ask the domain experts to provide a mean

and a variance because these parameters are much easier to understand for non-statisticians

compared to the α and β parameters for the Beta distribution. Then we solve for the α and

β parameters automatically.
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Figure 3.3: Beta Distribution probability density function

We have to be careful here to make sure the transition matrix, shown in Equation (3.2),

is still valid. For example, the domain experts can specify means for Beta distributions

relating to transitioning from topography type “plain” to all three topography types as 0.5,

0.3, and 0.2. These numbers sum up to 1. Unfortunately when we sample from the three

Beta distributions, the values we get could possibly be something like 0.5, 0.35, and 0.22,

which do not sum up to 1. That means these numbers are not true probability values, and

we have to normalize them so they become true probability values. Therefore, we use Tij to

denote the value we generate from the Beta distribution corresponding to transitioning from

topography feature i to topography feature j, and use T ′ij to denote the true probability value

(after normalization) for the transition. The probability distributions of Tij are the domain

experts’ prior beliefs with respect to topography terrain features, and there are 9 of them.

Similarly, since we have three different vegetation density types, we also need a 3× 3

transition matrix to represent the probability of transitioning from one vegetation density
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type to another. This adds 9 vegetation density related priors to the model. With respect to

local slopes, since there are only three possible transitions (uphill, no slope, and downhill),

there are only 3 more priors to specify.

Therefore, our model has a total of 21 priors (9 related to topography, 9 related

to vegetation density, and 3 related to local slope). For simplicity, we denote the joint

distribution of all the priors as π(θ), where

θ = T00, T01, ..., T22, V00, V01, ..., V22, S0, S1, S2 (3.3)

and each prior follows a Beta distribution with known α and β values (solved using the mean

and variance values provided by domain experts). Thus

Tij ∼ Beta(αTij , βTij) (3.4)

Vij ∼ Beta(αVij , βVij) (3.5)

Si ∼ Beta(αSi
, βSi

) (3.6)

where Tij represents the probability of transitioning from topography type i to j (possibly

i = j) where i = 0, 1, 2 and j = 0, 1, 2. Similarly, Vij represents the probability of transitioning

from vegetation type i to j, and Si represents the probability of following a certain local

slope type i.

State Transition

In an earlier part of the paper we described how the search area is discretized into a

hexagonal tessellation. Each cell becomes a state. Let X represent a state, then X can be

defined as a vector containing information about the hexagonal cell:

X = [topography, vegetation density, elevation, index of tessellation]
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With our model, we assume the state transition follows a first-order Markov process,

meaning that the next state the lost-person (LP) will be in is only dependent on the current

state the LP is in.

P (Xt|X0, X1, ..., Xt−1) = P (Xt|Xt−1) (3.7)

This is a strong assumption and it might not hold. For example, the amount of time

traveled following the same direction (e.g., 20 minutes) could affect whether the LP wants

to turn around and backtrack; similarly, the intended destination might affect which path

the LP chooses while looking for the way. However, we argue that because the LP is in a

disoriented state (although the LP might think otherwise) in the wilderness, the direction the

LP follows could very well not be the direction the LP thinks he/she is following. Therefore,

this assumption should not prevent the model from having useful predictive power. However,

we also plan to extend the model in future work that will take into consideration the intended

destination and incorporate that information into the representation of the current state.

When we compute P (Xt|Xt−1), it is necessary to combine the topography transition

probability with vegetation density and local slope so we can borrow strength from each of the

terrain features. We denote T (Y |X) as the probability of transitioning from the topography

of state X to the topography of state Y , and V (Y |X) as the probability of transitioning

from the vegetation density type of state X to the vegetation density type of state Y . Using

the elevation difference between state X and state Y , we can identify the local slope of

going from state X to state Y . We denote S(Y |X) as the probability of transitioning from

state X to state Y only based on local slope information. T (X|Y ), V (X|Y ), and S(X|Y )

are all true probability values, and they correspond to the relevant entries in the terrain

features transition matrices such as Equation (3.2). Assuming the three terrain features are

independent of each other we can combine the three probabilities by taking the product of
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the three,

P (Xt|Xt−1) ∝ T (Xt|Xt−1)V (Xt|Xt−1)S(Xt|Xt−1), (3.8)

where P (Xt|Xt−1) is the entry in the row indexed by Xt and the column indexed by Xt−1

in the state transition matrix describing the probability of transitioning from any state to

any other state (including transitioning into the same state). Here P (Xt|Xt−1) is a true

probability value.

Because a person can only travel from one hexagonal cell to its neighboring cells

(or remain in the original cell), in each row of the state transition matrix, the transitional

probabilities for all Xt /∈ N(Xt−1) will be 0, where N(Xt−1) is the set of neighboring states

of state Xt−1 (including Xt−1). That means the sum of P (Xt|Xt−1) for all Xt ∈ N(Xt−1) is 1

(elements in each row of the state transition matrix should sum to 1).

If we look at each hex cell closely, we can see that from each cell a person can travel

to one of the six neighboring cells or remain in the same cell.

Let φ′ = P (Xt|Xt−1) where Xt ∈ N(Xt−1) (3.9)

Let φ = T (Xt|Xt−1)V (Xt|Xt−1)S(Xt|Xt−1) where Xt ∈ N(Xt−1) (3.10)

We know φ and φ′ each have 7 elements, and
∑7

i=1 φ
′
i = 1, where

φ′i =
φi∑7
j=1 φj

(3.11)

Equation (3.11) normalizes the products of terrain feature transition probabilities to

compute the P (Xt|Xt−1) entries for all neighbors of state Xt−1.
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The Likelihood

Because from each cell a person can travel to one of the six neighboring cells or remain

in the same cell, the likelihood of one observation (how the lost person traveled from one cell

to one of the neighboring cells), denoted as f(z|θ), follows a categorical distribution with 7

dimensions. Relating to the previous section, z can be defined as

z = (Xt, Xt−1), where Xt ∈ N(Xt−1). (3.12)

In other words, z is really a vector in the form of a 7-tuple, but to avoid notation confusion,

we will only use z to denote multiple observations in a later section when we discuss posteriors.

If we use zi to represent each element in vector z, then zi is constrained by

zi ∈ {0, 1} and
7∑
i=1

zi = 1, (3.13)

meaning exactly one element in the 7-tuple is 1 and the others are all 0s. For example, an

observation can be of the form of (0,0,0,0,1,0,0), meaning the person traveled to the fifth

neighboring cell. Thus, our observation given all the prior beliefs is governed by

z|θ ∼ CAT (φ′), where (3.14)

φ′ = φ′1, φ
′
2, ..., φ

′
7, and (3.15)

f(z|θ) =
7∏
i=1

φ′zii , where (3.16)

θ = T00, T01, ..., T22, V00, V01, ..., V22, S0, S1, S2. (3.17)

Note that in order to compute the likelihood for z using Equation (3.16), we need to

identify Xt−1, the state the person is in, and all neighboring states Xt ∈ N(Xt−1). We also

need to sample from our priors π(θ) in order to construct terrain features transition matrices,

which are then used in Equations (3.9) – (3.11) to compute φ′.
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Figure 3.4: A graphical illustration of the proposed model. Top row: probability distribution
for each prior belief. Fourth row: probability of transitioning into a neighboring cell in the
hex tessellation. Bottom row: an observation indicating possible travel directions for the lost
person.

Figure 3.4 illustrates the process of computing the likelihood graphically. The top row

shows the 21 priors we sample from to generate θ (9 for topography, 9 for vegetation density,

and 3 for local slope). After normalization, we obtain all the entries for the terrain features

transition matrices as shown in the second row (9 priors from the 3× 3 topography transition

matrix: T ′00, T
′
01, ..., T

′
22, 9 from the 3× 3 vegetation density transition matrix: V ′00, V

′
01, ..., V

′
22,

and 3 local slope probabilities: S0, S1, S2). Depending on the Xt−1 and Xt states associated

with z, relevant T (Xt|Xt−1), V (Xt|Xt−1), and S(Xt|Xt−1) probability values are identified

and multiplied to compute φ (third row). The elements of the φ vector are further normalized

to produce φ′ (fourth row), which are the probabilities of the lost person traveling from state

Xt−1 to all the neighboring states.
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Figure 3.5: Bayesian network with multiple observations. Top row: probability distribution
for each prior belief. Bottom row: multiple observations from previously collected human
behavior data in the form of segments of GPS track logs together with terrain features
associated with the track logs.

Once samples are generated from the priors π(θ), we can deterministically compute

the values for the middle layers — they are simply delta functions. Therefore, when we build

the Bayesian network to compute the posteriors, we collapse all the middle layers and only

keep the top and bottom layers.

3.3.5 Using the Model to Compute the Posterior

A great benefit of using a Bayesian model is that we can incorporate existing observa-

tions to update prior beliefs. The updated beliefs are the posterior beliefs.

Existing observations in the model are in the form of sections of GPS track logs (also

discretized to a hexagonal tessellation) together with the terrain features associated with the

track logs. By combining existing human behavior data with prior beliefs, we can reduce the

domain experts’ uncertainty.

To incorporate multiple observations, we simply add multiple z|θ nodes in the bottom

row of the Bayesian network (illustrated in Figure 3.5). The network is dynamically built

with appropriate parent nodes identified and linked to the observation nodes dynamically.

Because of the complexity of the model, it is impossible to solve for the posterior

distribution π(θ|z) in closed form. That is why we used an MCMC approximation algorithm as

the generation tool. Specifically, we used a random walk flavor of MCMC that uses the Gibbs

60



www.manaraa.com

Sampling algorithm, shown in [35], on the outside loop, with Metropolis-Hastings algorithm,

shown in [35], inside each iteration of the Gibbs Sampling. Gibbs sampling is an algorithm

for generating samples from a joint probability distribution of multiple random variables

when the conditional distribution of each variable is known. It generates samples from the

distribution of each variable in turn, conditioned on the current values of other variables.

The Metropolis-Hastings algorithm generates a first-order Markov chain in each state and

uses a proposal density, which depends on the current state, to generate a new proposed

sample. This value is accepted if a value drawn from a uniform distribution between 0 and 1

meets certain requirements. Otherwise, the current value is retained. In our implementation,

we used a Gaussian function as the proposal density.

In our implementation, we used 500 iterations for burn (throwaways) and kept 10,000

samples for each parent node. In each iteration, the Gibbs Sampling algorithm tries to sample

from the distribution of each parent node in turn, conditioned on the current values of other

parent nodes. However, Gibbs Sampling relies on the Metropolis-Hastings algorithm to really

generate samples from the posterior distribution by using a proposal density function (a

Gaussian distribution in our case). These samples approximate the posterior distribution for

each of our 21 priors.

Figure 3.6 illustrates how the Monte Carlo method approximates the posterior dis-

tribution of one parameter (a parent node). In each iteration, the Metropolis-Hastings

algorithm probabilistically generates a sample for the node based on the complete conditional

constructed by Gibbs sampling (points inside smaller graphs in the upper portion where each

point represents a probability value generated from a Beta distribution). If we combine all

these samples into one graph and bin the points into small clusters (bigger graph in lower

portion where the y axis is the count), we can connect the top of the bins and draw a curve.

This curve is an approximation of the posterior distribution of the node, and as the number

of samples approaches infinity, the curve matches the actual posterior distribution.
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Figure 3.6: Graphical illustration of how the Monte Carlo method approximates the posterior
distribution of one parameter. Upper: multiple iterations of sampling. Lower: samples
clustered to approximate the real distribution.

In our experiments, the MCMC algorithm completed in 220 seconds on a Dual-core

AMD 3800+ PC with 3GB of memory.

3.3.6 Using the Model to Compute the Predictive Probability Distribution

Using the model described above, once we have the priors specified, we can build

our 608 × 608 state transition matrix. In our implementation, we sample once from each

Beta distribution for each time step. Starting from the lost person’s point last seen, we

can generate the prior predictive probability distribution by multiplying the state transition

matrix in each time interval. This method allows the search and rescuers to see how the

predictive probability distribution changes as time progresses.

[104] and [120] show that in WiSAR scenarios, as time progresses, the effective search

radius increases by approximately 3km/hour, which is equivalent to 50m/minute. Because

the age of the lost-person affects the speed the person travels, we can adjust the size of the
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Figure 3.7: Comparing prior predictive distribution (upper row) against posterior predictive
distribution (lower row)

time interval accordingly. With our lost scout scenario, because children generally travel

slower than adults, we assume the lost scout travels at roughly 24m/minute; therefore, we

define each time step as 1 minute. When we multiply the state transition matrix (sampled

once from the prior distributions at each time step) 200 times (3 hours and 20 minutes = 200

minutes), we have the prior predictive probability distribution map as shown in the upper

row of Figure 3.7.

Once we combine previously collected human behavior data and approximate the

joint posterior distribution of all the parameters, we can sample from the posterior beliefs

instead of the prior beliefs. Following the same state transition matrix multiplication, we can

also generate the posterior predictive probability distribution. The lower row of Figure 3.7

shows this distribution. In the Wilderness Search and Rescue case, the posterior predictive

probability distribution is the 2D probability distribution map we are seeking.
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3.4 Evaluation of the Model

3.4.1 Synthetic Data

Pretending to be domain experts, we specified all the prior distributions by setting

the means and the variances. The matrices below show the prior distributions we set for the

vegetation type transition matrix. The first matrix shows the means and the second matrix

shows the variances. 
µV00 = 0.6 µV01 = 0.25 µV02 = 0.15

µV10 = 0.5 µV11 = 0.3 µV12 = 0.2

µV20 = 0.4 µV21 = 0.4 µV22 = 0.2

 (3.18)


σ2
V00

= 0.142 σ2
V01

= 0.152 σ2
V02

= 0.12

σ2
V10

= 0.152 σ2
V11

= 0.152 σ2
V12

= 0.152

σ2
V20

= 0.152 σ2
V21

= 0.152 σ2
V22

= 0.152

 (3.19)

We set these values following common sense. For example, we believe a lost scout

is more likely to remain in sparse vegetation type (µV00 = 0.6) and unlikely to transition

from a sparse vegetation type to a dense vegetation type (µV02 = 0.15). We also believe a

lost scout is more likely to transition from a dense vegetation type to a medium or sparse

vegetation type and from a medium vegetation type to a sparse vegetation type (µV21 = 0.4,

µV20 = 0.4, µV10 = 0.5). However, for most of these Beta distributions, we are not certain

about our estimation, which is why we specified large variances for most of the parameters.

For example, σ2
V10

= 0.152 means we believe the probability to transition from vegetation

type medium to sparse could be as low as 0.05 and as high as 0.95. In real WiSAR scenarios,

the priors should come from past statistical analysis of lost-person behaviors, such as [48]

and [119], combined with domain experts’ opinions.

Each observed data point is a transition from one cell to another neighboring cell

(including remaining in the same cell) in previously collected GPS track logs. The track logs
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do not even have to be in the same search area of the current incident. What we really care

about is how terrain features affect a person’s behavior in the wilderness. If the track logs

contain this kind of information, we can use it to update our prior beliefs. These posterior

beliefs can then be used in a generative approach to predict how the lost person might travel

from the point last seen as time progresses. For the lost scout scenario, our observed data

is partly shown in Figure 3.2 as the path of white cells. We use the word “partly” because

during the travel, the person sometimes stayed in the same state during the 1-minute time

interval. To test the robustness of the model, we intentionally designed the data set so that

the person remained in the same vegetation type most of the time. We also repeated the

same path three times in our synthetic dataset to simulate three different past GPS track

logs. By repeating these we are basically adding more strength to the data and we expect the

data to have a much stronger effect on the posterior distributions for the parameters. Each

path consists of 45 transitions; therefore, our dataset has 135 data points.

3.4.2 Prior vs. Marginal Posterior

Using the posterior samples, we can compare the marginal prior distribution with the

marginal posterior distribution for each of our parameters. Figure 3.8 shows the comparison

for some of the parameters. The dotted lines represent the prior distributions and the solid

lines represent the posterior distributions.

The plot in the upper left is for parameter T02, the terrain feature transition probability

from lake to hill. Since we do not have any data point in our dataset that transitioned from

lake to hill, here we see the posterior is almost identical to the prior. The plot in the upper

right is for parameter T12, the terrain feature transition probability from plain to hill. In

our dataset, a good segment of the path basically followed the contour line but stayed in

the plain states. This characteristic of the dataset explains why the posterior distribution is

much narrower and had a much lower mean—because the data did not show many changes

from plain to hills, the posterior probability of this transition is much lower with less variance.
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Figure 3.8: Comparing prior distribution with marginal posterior distribution. Upper Left:
T02 Upper Right: T12 Lower Left: V01 Lower Right: S1.

The plot in the lower left is for parameter V01, the terrain feature transition probability from

vegetation type sparse to medium. The plot in the lower right is for parameter S1, the terrain

feature transition probability from no slope to no slope. Both of these posteriors are only

slightly different from the priors.

3.4.3 Correlation of Parameters

When we ask the domain experts to specify the priors, we assume the parameters

are independent. Because we have 21 parameters, the joint posterior distribution in the

parameter space is really a distribution with 21 dimensions, which is impossible to plot.

Instead, we use a correlation image to show whether there exist correlations between pairs of

parameters.

Figure 3.9 shows a graphical representation of the correlation between each pair of

parameters. A grey value, such as cell(1,21) in the lower left corner, indicates that there is
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no correlation between the two parameters. A white cell, such as cell(1,1) in the upper left

corner, means the two parameters are fully positively correlated, and a black cell means the

two parameters are fully negatively correlated. Here we see that the vegetation parameters

V20 (dense to sparse), V21 (dense to medium), and V22 (dense to dense) showed positive

correlation. Other positive correlations also mostly appear between neighboring parameters.

There is also a clear positive correlation between V22 (Vegetation: dense to dense) and S0

(uphill). These positive correlations are marked by the big circle in Figure 3.9.

The results of the correlation analysis indicate that there is likely a correlation among

different terrain features. Interestingly, from this figure we can see that parameter V12

(Vegetation: medium to dense) and T11 (Topography: plain to plain) are clearly, negatively

correlated (marked by the upper small circle in Figure 3.9). Parameter V22 (Vegetation: dense

to dense) and T11 (Topography: plain to plain) are also clearly, negatively correlated (marked

by the lower small circle in Figure 3.9). A closer look at the terrain features of the area shows

that dense vegetation is mostly located on the hill topography type and medium vegetation

is mostly located on the plain topography type. This explains why we see such a negative

correlation. This emergence of correlations that are compatible with terrain features suggests

that the process of combining prior information with observed track logs is useful. However,

when we let the domain experts specify the prior distributions, it is much more intuitive for

them to assume independence instead of specifying conditional probabilities (to specify how

the parameters are correlated), and we rely on data to identify the dependence relationship.

3.4.4 Prior Predictive vs. Posterior Predictive

In this section we compare the prior predictive probability distribution and the

posterior predictive probability distribution. The prior predictive is generated by sampling

from the prior beliefs specified in the first part of the model. The posterior predictive is

generated by sampling (using MCMC) from the posterior beliefs generated from the first

part of the model. If no previous human behavior data is available, then the prior predictive
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Figure 3.9: Parameter correlation: a grey value of 128, such as (1,21) in the lower left corner,
represents no correlation. A white cell, such as (1,1) in the upper left corner, represents a
correlation of 1. A black cell represents a correlation of -1. Parameters are in the following
order: T00, T01, ..., T22, V00, V01, ...V22, S0, S1, S2. The big circle marks a positive correlation
between parameters, and the small circles mark a negative correlation between parameters.

can still be used to show likely places to find the missing person; otherwise, the posterior

predictive should be used because combining existing human behavior data enables the model

to reduce uncertainty in the posterior beliefs.

Both probability distributions use a generative approach to predict how the lost person

might travel from the point last seen as time progresses. The 2D probability distribution

map generated is the final product of the model and can be used by Incident Commanders in

WiSAR operations.

The lower row of Figure 3.7 shows the posterior predictive distribution created using

the samples generated for all the parameters through MCMC. After 200 time steps (equivalent

to 3 hours and 20 minutes), we can see that near the right side of the map, clearly much less

probability mass is allocated compared with the prior predictive distribution (indicated by

arrows). The center of the northern region also has lower probability compared with the prior

predictive distribution, but the difference is not dramatic. Therefore, with our lost scout
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scenario, this posterior predictive probability distribution map suggests that we should send

search and rescue workers to the regions marked by the two highest peaks first to maximize

the likelihood of finding the missing scout.

3.4.5 Bayesian χ2 Test for Goodness-of-Fit

We used the Bayesian χ2 test for goodness-of-fit proposed by [55] to evaluate the

quality of posterior beliefs in the proposed model. This test is closely related to the classical

χ2 goodness-of-fit statistic, but different in many aspects. The classical χ2 goodness-of-fit test

computes a single p-value. The Bayesian version, however, computes the goodness-of-fit at

each iteration of the MCMC, conditional on the current set of model parameter values sampled

from the posterior distribution of all the model parameters. The posterior distribution of the

resulting p-values converges to a χ2 distribution with k− 1 degrees of freedom as the number

of iterations approaches infinity. [55] defined the Bayesian χ2 test for goodness-of-fit using

the following equation:

RB(~̃θ) =
K∑
k=1

[
(mk(

~̃θ)− npk)√
npk

]2

(3.20)

where ~̃θ is a set of model parameters sampled from the posterior distribution in a single

iteration, mk(
~̃θ) represents the number of observations that fell into the kth bin, n is the

total number of observations, and pk is the probability assigned by the null model to this

interval. Values of pk are held fixed while the bin counts mk(
~̃θ) are considered as random

quantities.

Because our likelihood function is a categorical distribution with 7 parameters (a

discrete distribution) we used 7 bins, so k = 7. It is worth mentioning that pk is different for

each data point in our case. For each set of model parameters, we calculate the probability

values (for each neighbor of the cell, into which the data point fell) for the 7 bins for each

observed data point, and then sum up all the probability values for each bin across all data
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points. By dividing the sum for all bins, we normalize the probability value, and the result is

the probability for that bin.

With k−1 = 6 degrees of freedom, we computed the χ2 distribution and then computed

the quantiles (the p-values) for each of the 10,000 RB(~̃θ) values. The results show that only 6

out of 10,000 p-values are smaller than 0.05, the statistical significance value we selected. The

Bayesian χ2 test of goodness-of-fit suggests that our model fits the synthetic dataset well.

3.5 Discussions and Limitations

First we summarize some of the assumptions made throughout the development of

the model and our rationale behind them. We assume that the state transition follows a

first-order Markov process. Our argument is that the lost person is likely in a disoriented

state, therefore, the assumption should not be a big problem (see section 3.3.4 for more

details). Another assumption is that the three terrain features are independent. Although

correlation analysis shows possible dependence between terrain features, we believe it is

more intuitive for domain experts to assume independence instead of specifying conditional

probabilities, and we rely on data to identify the dependence relationship (see section 3.4.3

for more details). We also assume that the Markov process is stationary with homogeneous

time steps (see section 3.3.6 and section 3.4.4). However, we argue that the flexibility of

specifying finer time intervals and the possibility to stay in the same state can “simulate” a

non-stationary process with various time durations, thus alleviating the restriction.

After analyzing 162 lost-person incidents near Peter Lougheed Provincial Park in

Alberta, Canada, [48] come to the conclusion that there is a close correlation between a lost-

person’s intended destination and the angle of dispersion (calculated from the lost-person’s

point last seen and the point the person was eventually found). This finding suggests that

it might be a good idea to incorporate the missing person’s intended destination into our

existing model.
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One limitation of this paper is that we are using synthetic data for our evaluation. To

address this, we recently collected all the GPS track logs within the US that were uploaded

to the popular web GPS track log repository, everytrail.com. We were able to identify 329

GPS track logs that contained the word “geocache” (or “geocaching”). Because most of the

geocache “treasures” are hidden in the wilderness off of a designated trail, we believe that

GPS track logs created by geocachers are likely to contain behavior data indicating how a

human might react to different terrain features. After closer examination of these track logs,

we see a clear trend that the locations of the geocache “treasures” play an important role

in the person’s behavior in the wilderness in addition to terrain features. If we want to use

this kind of GPS track log data as existing human behavior data, our model has to take into

consideration the intended destination.

Another trend we observed from these GPS track logs is that a majority of the

geocachers first followed some trails to get closer to the “hidden treasure”. When the trail

starts to clearly lead the person further away from the geocache, or when the person decides

to take a shortcut somewhere along the trail, the geocacher then abandons the trail and

creates a new path.

During the summer of 2009, a student in our research lab went for a geocache hunt

near Box Elder Peak in Utah. After successfully finding the “hidden treasure”, he decided to

not return the same way he came from, but to try some alternative route. Soon he found

himself lost and struggled for several hours to reorient himself. Eventually he stumbled onto

a hiking trail, a different one from what he took before completing the geocache mission, then

he followed the trail and found his way back. Figure 3.10 shows the GPS track log displayed

in Google Earth for the period when he was off-trail and lost in the wilderness. The point we

want to make here is that after running into another unknown hiking trail, he immediately

decided to stay on the trail. This kind of behavior can only be predicted by models that

handle trail-following, and our present model clearly lacks this capability.
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We plan to extend our model to support intended destination and trail-following.

Doing so would allow us to take advantage of abundant GPS track logs and incorporate such

human behavior data into the posterior distribution. Once we have the newer model, we can

also take advantage of the existing Bayes factor analysis methods, such as Akaike Information

Criterion (AIC) proposed by [2], Bayesian Information Criterion (BIC) presented in [103],

and Deviance Information Criterion (DIC) described in [112], to perform extended validation.

In the present model, for every time step, only one sample is generated from each

Beta distribution. A possible improvement is to use the idea of particles. At each time

step, the model would generate, for instance, 100 examples from each Beta distribution, and

then compute 100 sets of categorical distributions (each has 7 discrete values representing

probabilities of transitioning to 7 directions), which can then be averaged to produce a

final categorical distribution with better quality and a better representation of the experts’

uncertainty. Because the added computation is outside of the MCMC algorithm and the

matrix multiplications, the added execution time should be minimal.

Another important question we should ask is: How well would an experienced IC trust

the probability distribution map generated using the proposed model? We strongly believe

that the predictive probability distribution generated using the proposed model should only

be used as a base onto which domain expertise can be further projected. The objective of the

model is to provide a tool that reduces the IC’s workload and supports the IC’s operation,

but not to replace the IC’s responsibilities. With abundant experience, training, and the

ability to incorporate much richer information (e.g., lost person profile, weather), the IC

is responsible for validating the probability distribution suggested by the model and also

for coming up with the final distribution map. To really make the tool useful for ICs in

WiSAR operations, two additional elements are necessary: 1) a human factors analysis (user

study) of the users’ trust of the algorithms and automation in the WiSAR domain, and 2) an

interface component/tool that enables the IC to easily modify the probability distribution

generated by the model. The ability for the IC to modify the probability distribution both
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Figure 3.10: Satellite imagery of Elder Box Peak in Utah. The GPS track log shows the
path taken by a hiker in summer 2009 when he went off the hiking trail and became lost for
several hours before stumbling into another hiking trail.

at the beginning and during the search can potentially improve how (much) users trust the

system and make the proposed model more acceptable to users. Future work should develop

an interface tool that enables a user to modify a probability distribution map. We believe

results from such research can help improve the usability and usefulness of the proposed

model.

3.6 Conclusions and Future Work

In WiSAR operations, the Incident Commander typically has limited resources and

relies on a probability distribution map to allocate resources, to direct the search, and to

coordinate rescue workers. Because as time progresses, the survivability of the missing person

decreases and the effective search radius increases by approximately 3km/hour, it is critical

to find the missing person quickly. That is why areas with high probabilities are searched

first, and the quality of the probability distribution map can have a great impact on the
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search and rescue operations. We proposed a Bayesian approach to help generate such

a probability distribution map by modeling lost-person behaviors based on three terrain

features: topography, vegetation, and local slope. Our objectives are to ease the generation

of probability distribution maps for the search and rescuers and to improve the quality of

these maps.

Our proposed model uses publicly available geographic information and enables domain

experts to specify uncertainty in their prior beliefs of how the missing person will transition

from one terrain feature to another. Using the Bayesian model, past human behavior data

in wilderness can be incorporated into the model to generate posterior beliefs. Following

a first-order Markov process, the posterior beliefs can be used to build a temporal state

transition matrix that allows the generation of the posterior predictive probability distribution

map for any given time interval. We evaluated our model using the Bayesian χ2 test of

goodness-of-fit from [55] because it allows the evaluation of multiple p-values for samples

generated from the posterior parameter space. Results from the test suggest that our model

fits the synthetic dataset well. The proposed Bayesian approach is promising, but we also

acknowledge that the present model is limited to the proposed terrain features and could

benefit from incorporating additional factors such as intended destination and trail-following.

In future experiments, we plan to let search and rescue experts specify terrain-based

transitional probabilities so the prior predictive probability distribution can be generated

using our model. Then we also let the experts directly specify a probability distribution on

the regional map (with and without the restriction of only considering how terrain features

would affect the lost-person’s behavior). It would be very interesting to compare the resulting

distributions and analyze the causes of any differences. However, because there is no “ground

truth” with respect to the “correct” probability distribution, such comparisons will not be

used as a form of validation. Instead, such information can be used to enrich prior beliefs in

our model.
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Future work should also explore how the generated probability distribution map can

be used as a base by the search and rescue workers to reduce workload and also reduce

the chance that the search and rescue workers might overlook certain areas that should

have been allocated higher probabilities. It is also worth investigating what effect different

spatial resolution (granularity) when sampling GPS track logs might have on the quality of

the predicted probability distributions. The temporal model enables the search and rescue

workers to view the dynamic changes of the probability distribution map over time. It will

be beneficial to investigate further how search and rescuers can take advantage of this kind

of information to improve search efficiency.

Most importantly, the proposed terrain feature-based Bayesian model is only the

foundation of a larger framework. Future work should include incorporating more factors

that affect lost-person behaviors into the network. Such factors include but are not limited

to direction of travel, missing person profile, panicking factor, weather conditions and season

of the year. The framework should allow incorporating observed data, such as a piece of

clothing or candy wrapper, into the model as the search and rescue operation progresses.

Our ultimate goal is to provide tools that will improve the efficiency and effectiveness of each

search and rescue operation so the search and rescue workers can locate the missing persons

in the minimum amount of time required, so lives can be saved.
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Chapter 4

Paper: UAV Intelligent Path Planning for Wilderness Search and

Rescue1

Abstract

In the priority search phase2 of Wilderness Search and Rescue, a probability distribution

map is created. Areas with higher probabilities are searched first in order to find the missing

person in the shortest expected time. When using a UAV to support search, the onboard

video camera should cover as much of the important areas as possible within a set time.

We explore several algorithms (with and without set destination) and describe some novel

techniques in solving this problem and compare their performances against typical WiSAR

scenarios. This problem is NP-hard, but our algorithms yield high quality solutions that

approximate the optimal solution, making efficient use of the limited UAV flying time.

1Published in IROS 2009 (IEEE/RSJ International Conference on Intelligent Robots and Systems)
conference. Authors are Lanny Lin, and Michael A. Goodrich.

2Four qualitatively different types of search strategies are used in WiSAR: hasty search, constraining
search, priority search, and exhaustive search. See [41] for more details.
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4.1 Introduction

The use of mini-UAVs (Unmanned Aerial Vehicles) in Wilderness Search and Rescue

(WiSAR) has gained interest for researchers and experienced advancement in recent years

due to its low cost, portability, and potential field use [41]. The UAV onboard video camera

provides visual support, enables search and rescue workers to systematically survey large areas

of importance in real time [41, 92], and increases the workers’ awareness of the environment.

For WiSAR, as time progresses, the survivability of the missing person decreases and

the effective search radius increases by approximately 3km/hour [104, 120]. Therefore, search

efficiency can dramatically affect the outcome of the search and rescue. In the prioritized

search phase, the incident commander creates a probability distribution map for finding the

missing person based upon terrain features, profile of the missing person, weather conditions,

and subjective judgment of expert searchers. Such maps can also be created systematically

by utilizing geographical information available to the public via the Internet [31, 68, 111].

UAVs have limited flying time, and in most cases, it is not long enough for the onboard

video camera to cover the entire search area. For these reasons, the important question is

this: given a probability distribution map, a starting point, an ending point (optional), and

specified flying time, what is the best path that enables the UAV onboard video camera to

“cover” as much of the probability distribution as possible?

Characteristics such as possibly repeated visits and probability cumulation make this

a more challenging problem than standard Orienteering Problem (OP) and coverage problem.

Contributions of this paper include novel path planning techniques (“global warming effect”,

path crossover/mutation), additional specified-destination constraint while accumulating

probability, a solid validation of the algorithms’ performance, and applying algorithms to

a practical, real-world application. Experimental results from this paper are conducted in

simulation and not on-board a real UAV.
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4.2 Problem Formulation

We model this problem as a discretized combinatorial optimization problem with

respect to probability accumulated in the 2D space for UAVs that use gimbaled cameras. Using

Koopman’s search metric of the instantaneous probability of detection by one glimpse [63],

we assume the observer has a 100% target detection rate. This means that as the UAV

camera footprint moves along the probability distribution map, it collects (“zeros out”) all

the probability along the way and accumulates the probability. A good analogy would be

thinking of the UAV as a vacuum cleaner sucking up probabilities with 100% efficiency.

In WiSAR operations, a UAV maintains an altitude of approximately 60m above ground

and travels at roughly 12–13m/s [41]. With this height, the onboard camera footprint size

comes to about 32m×24m. The batteries on the UAV can keep it airborne for approximately

1–2 hours depending on weather conditions. We assume that the UAV will always maintain

the same height of 60m above ground (through Height-Above-Ground automation) and travel

at the constant speed of 12m/s, and use 24m×24m as the effective camera footprint size.

Given these parameters, a 60×60 probability grid, where each probability node is 24m×24m,

represents an area of 2.0736km2 that will take the UAV 2 hours to cover entirely. In our

path planning, we restrict the direction a UAV can travel to only North, South, West and

East (making only 90 degree turns), and it takes the UAV 2 seconds (1 time step) to travel

from one node to its direct 4-connected neighbor. In real flights, a UAV can approximate a

90 degree turn (covering 3 nodes) in 4 seconds, so this model is close to UAV’s capabilities.

Also during roll or yaw, the gimbaled camera can rotate to remain aiming straight down,

enabling the 90 degree turn of the camera footprint.

Using i for the row number and j for the column number, each probability node (cell

in grid) can be written as Nij where 0≤i, j<60. The value of each Nij is the total volume of
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probability within the grid cell and thus

n−1∑
i=0

n−1∑
j=0

Nij = 1, (4.1)

where n=60. Let T be the total number of time steps allowed for the UAV (specified

flying time). Let P be the set of all possible paths for the UAV on the probability grid

for T time steps. Each path, pk∈P , can be represented by a sequence of probability nodes

{N0, N1, N2, ..., NT} consisting of T+1 nodes. If the UAV is allowed to visit a node more than

once, then the same node can be in a different part of the sequence.

If we use a binary variable xij to represent whether Nij∈pk, xij becomes a function of

path pk:

xij(pk) =

 1, Nij ∈ pk

0, otherwise
(4.2)

The number of unique nodes visited is less than or equal to the length of the path:

n−1∑
i=0

n−1∑
j=0

xi,j(pk) ≤ T + 1, (4.3)

and the total probability accumulated, PCpk , if the UAV follows path pk is

PCpk =
n−1∑
i=0

n−1∑
j=0

xij(pk)Nij. (4.4)

The optimal path p∗∈P is defined such that∀pk∈P, PCp∗≥PCpk , and our goal is to find

or approximate the path p∗, which produces the maximum cumulative probabilities within

reasonable computation time.
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4.3 Related Work

Many algorithms have been used for UAV path planning such as Voronoi Diagram with

Eppstein’s k-best paths algorithm [5], A* [92], LRTA* [53], and Probability Roadmaps [91].

These papers focus on obstacle avoidance and sensing multiple targets.

For path planning in searching for a target, some researchers propose to use a proba-

bilistic model and try to maximize accumulated probability along the path. In [46], Hansen et

al. propose three search strategies: greedy, contour, and composite search, using a probability

grid. In a series of papers (e.g. [11, 12]), Bourgault et al. describe a Bayesian framework

for trajectory planning to maximize the chances of finding the target given restricted time

using one or multiple UAVs and human systems. However, the solution uses a very simple

1-step lookahead approach which generates paths far from optimal and difficult to improve

upon. Both papers do not consider the possible set destination constraint and also lack solid

validation of the path efficiency.

If we disallow visiting the same node more than once, this problem falls within a

variation of the Traveling Salesman Problem (TSP) called the Orienteering Problem (OP) [93]

or the Prize-Collecting Traveling Salesman Problem (PCTSP) [45], both of which are NP-

Hard [109]. Many exact solving methods for the OP have been developed ([32, 65, 93].

These exact methods can find optimal solutions to small OP problems, but for large-scale

OP problems, approximation heuristic approaches are preferred. Mittenthal and Noon [77]

present a heuristic approach that inserts or deletes a city from the subset-tour. Tasgetiren

and Smith propose a Genetic Algorithm in [122] that encodes tours using a sequence of

points and uses a penalty function to help search infeasible regions. Liang and Smith present

an Ant Colony Optimization approach that uses an unusual sequenced local search and a

distance-based penalty function in [67]. These algorithms work well with OP problems of

small number of nodes (21–100 nodes) but can be slow with large number of nodes. They

also don’t allow repeated visits.
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4.4 Path Planning Algorithms

Because none of the path-planning algorithms we discussed above work well under our

model of the problem, we developed a set of algorithms based on the following ideas: Local

Hill Climbing (LHC), Convolution, and Evolutionary Algorithms (EA). We also verify the

paths generated to ensure the UAV is not flying backward or going outside of the allowed

search area.

4.4.1 Algorithms without a Set Destination

In situations where the operator does not have a preference for where the path should

end, the following algorithms were built and evaluated.

Complete-coverage Algorithm (CC)

The algorithm plans flight paths by following a lawnmower pattern. It first identifies

the smallest m×n bounding rectangle that contains all the non-zero probability nodes. If the

starting location is inside the pattern, the algorithm simply generates a path following the

pattern. Otherwise, it first plans a shortest path to the edge of the bounding rectangle. When

allowed flight time is large enough, this algorithm is guaranteed to collect all the probabilities.

Local Hill Climbing Algorithms (LHC)

This is a greedy algorithm that always follows the direction with the highest value. A

direct implementation of LHC does not work well with a multi-modal probability distribution

map because the path generated stays with one mode until it has covered it completely

before moving on to another. To address this problem, we use a global warming metaphor

where the “ocean surface” represents all the zero-valued nodes and the “islands” represent

the probability modes; see Fig. 4.1. We subtract a constant C from all nodes but keep all

node values non-negative, where C= max (Nij)/l, and l defines how fine grained the search
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Figure 4.1: Global Warming Effect

should be:

N ′ij ←

 Nij − C, Nij > C

0, otherwise
(4.5)

When the ocean surface rises C each time, the volume of islands above water decreases, and

if the ocean surface rises l times, all islands will be below water. In our experiments we set

l=40 and use the LHC algorithm to generate 40 paths: one before the ocean surface rises

and one for each time the ocean surface rises (before water covers everything). We then

recompute the probability accumulated for these 40 paths using the original probability grid

and return the best path. This global warming technique allows the LHC algorithm to break

out of one mode before completely covering that mode and move toward another. In case of

a tie as to where to go next, we use two methods as the tie-breaker: LHC-GW-CONV uses a

convolution kernel (with small, medium and large sizes) to determine which neighbor is more

promising, and LHC-GW-PF uses Potential Fields (PF) with various discounting factors to

determine where to go next.

Evolutionary Algorithms

We developed two Evolutionary Algorithms: EA-Dir and EA-Path. Both use the

probability accumulated for each path as the fitness function and employ the proportional

selection method [76]. The difference between the two algorithms lies in the path representation

during crossover.
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Figure 4.2: An example of single-
point path crossover (Upper row: the
parents. Lower row: the children)

Figure 4.3: An example of double-
point path crossover (Upper row: the
parents. Lower row: the children)

With the EA-Dir algorithm, a path is encoded as a string of directions consisting

of North, East, South, and West in the crossover phase (e.g. “NNWEE...”). Because the

paths generated using single-point crossover [76] have a very high probability of being invalid

(flying out of the map), we only use double-point crossover [76] and restrict the mid-section

to a fixed 5-direction string.

With the EA-Path algorithm, a path is encoded as a sequence of node positions. If

the two parent paths share only one common node, then single-point crossover is used; if they

share two common nodes in the same order, then double-point crossover is used; otherwise,

the two parent paths are discarded and the process starts over. For the single-point crossover

method the two parent paths are crossed at the common node; see Fig. 4.2. For double-point

crossover method, the first common node and the second common node in the parent paths

mark the middle sections to be swapped; see Fig. 4.3. Both techniques could result in one

longer path and one shorter path. The longer path is truncated back to the original path

length and the shorter path is extended by performing crossover again and then truncating.

Two types of mutation methods [76] are used for flight path evolution; see Fig. 4.4.

They follow a greedy approach with the hope that small positive changes to the path will
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Figure 4.4: Examples of mutations
in EA-DIR and EA-Path algorithms.
(Upper row: method 1. Lower row:
method 2)

Figure 4.5: Examples of mutations in
EA-Path E algorithm.
(Upper row: method 2. Lower row:
method 3)

lead to larger positive changes to the path. First we randomly select a node in the flight

path and see if the next two nodes along the path would form an L shape with this node or a

straight line (these are the only two possibilities). In the first case, method 1 (“flip”) is used

and the algorithm replaces the middle node with the node that mirrors the middle node if

we connect the first node and the third node with a line. This is like flipping a section of

the path. In the second case, method 2 (“pull”) is used and the algorithm inserts two nodes

into the path on one side of the line next to the first and the second nodes. This effectively

extends the path by two nodes, so we simply truncate the last two nodes from the path.

This is like pulling a string from the middle when the beginning end of the string is fixed.

Which side to select for insertion depends on whether the new path is a valid path. If both

sides allow valid paths, then the algorithm prefers inserting nodes that are not already in the

path. Random selection is the last tie-breaker. If all four nodes on either side of the line are

already included in the path, then a new mutation point is randomly selected and the same

procedure repeats.
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We use an initial population of 100 paths including various paths generated using

other algorithms and 95 randomly generated paths. LHC-GW-PF is not used because it

is too slow. Other parameters include replacement rate at 30% and mutation rate at 50%.

The best three paths are always kept in each iteration. The algorithm runs for at least 500

iterations and stops if either the best path does not improve after 200 iterations or if the

algorithm has completed 1000 iterations.

4.4.2 Algorithms with a Set Destination

In WiSAR, an operator might prefer the path to end at a specific destination node

to support UAV retrieval, persistent visualization of a specific region at a specific time, or

planning multiple path segments that make up a longer path. The following algorithms are

modified versions from the previous section to handle the additional requirement. We simply

add “ E” to the algorithm names to distinguish them.

Complete-coverage Algorithm (CC E)

This algorithm is identical to the CC algorithm up to the time when the remaining

flight time is just enough to fly the UAV to the end node, then it flies toward the end node

using the LHC-GW-CONV E algorithm (discussed shortly).

Local Hill Climbing Algorithms

The LHC-GW-CONV E and LHC-GW-PF E algorithms have an additional constraint

where nodes that prevent the path from reaching the end node within the remaining time

will not be selected.

Evolutionary Algorithm

The direction representation of a path does not work with a set destination, so the

EA-Path E algorithm also uses a sequence of node positions to encode the path. Here we
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increased mutation rate to 90% to force more exploration of the state space. The initial

population of 100 paths includes various paths generated using other algorithms as seeds

(both from start node to end node and reversed) and 90 randomly generated paths.

The EA-Path E algorithm uses both single-point and double-point crossover. The

difference is that when the child path is too long, the algorithm truncates the path to the

original path length, then backtracks the path until the distance between the end of the

child path and the desired end node matches the remaining time. The LHC-GW-CONV E

algorithm is then used to complete the path with the desired end node. If the child path is

too short, the LHC-GW-CONV E algorithm is used to complete the path.

The EA-Path E algorithm uses three types of mutation methods. First, we randomly

select a node in the path and see if the next two nodes along the path would form an L shape

with this node or a straight line. In the first case, method 1 (“flip”) is used (identical to the

one used in the EA-Path algorithm); see Fig. 4.4. If the nodes form a straight line, then

method 2 (“pull”) or 3 (“shake”) is selected with equal probabilities; see Fig. 4.5.

Mutation method 2 (“pull”) is a modified version from the EA-Path algorithm. This

method does not truncate two nodes at the end of the path; instead, it deletes two nodes in

the middle of the path. This is like pulling a string from the middle when both ends of the

string are fixed.

Mutation method 3 (“shake”) works by first marking a small mid-section in the path

(to keep it short, we set it to 6 nodes). We first randomly select a node in the path, then

traverse the path and find the fifth node down the path. If the path between these two

nodes is not a straight line, the method replaces the mid-section with random flying while

maintaining the same length for the mid-section. This is similar to shaking a chain where

the beginning and ending points remain fixed but the middle section shifts.
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4.5 Experimental Results and Analysis

4.5.1 Performance Metrics

We use Efficiency , EfficiencyLB and Running Time as metrics to measure the perfor-

mance of the algorithms, where Efficiency is calculated if we know what’s the best possible

and EfficiencyLB is used as an estimation when we have no way of calculating the best

possible. Sorting all the probability nodes by their values in descending order would generate

a list {N1, N2, N3, ..., N3600}. For the best possible path p∗, the probability accumulated PCp∗

is constrained by a theoretical upper bound B:

PCp∗ ≤
T+1−d∑
n=1

Nn = B, (4.6)

where d is the distance from the start node to the closest non-zero valued node. Then for

any path pk, we define Efficiency and EfficiencyLB as the following:

Efficiency =
PCpk
PCp∗

(4.7)

EfficiencyLB =
PCpk
B

(4.8)

PCpk can be calculated using (4.4). Efficiency can be calculated when PCp∗ is known and

EfficiencyLB can be calculated anytime. Clearly, EfficiencyLB ≤ Efficiency .

For example, a path with 95% Efficiency means the amount of probability accumulated

following this path is 95% of the maximum possible. A path with 85% EfficiencyLB means

the probability accumulated is 85% of the maximum amount possible if the UAV can teleport

from node to node, and the true Efficiency could be much higher.

All experiments are run on a Dual-core AMD 3800+ PC with 1GB of memory. For

each algorithm, running time is recorded so we can compare algorithm speed.
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Figure 4.6: Top row: 2D representations of unimodal, bimodal, and bimodal with overlap
probability distribution maps. Middle row: Simplified versions of the three types of maps.
Bottom row: Best paths found for each map.

4.5.2 Typical WiSAR Scenarios

In our experiments, we focus on probability distribution maps of three abstract but

representative WiSAR scenarios: unimodal, bimodal, and bimodal with overlap. The top row

of Fig. 4.6 shows the 2D representations where each pixel is a probability node; the lighter

the pixel, the higher the probability value. The middle row shows three simplified versions of

the distributions, which can be used to manually identify the best path possible for each map

and compute PCp∗ . Then we can measure the true Efficiency of paths generated. The blue

arrows on the maps mark the starting node (possible location for a WiSAR command center)

and the red dots mark the ending node (intentionally selected at a different region from the

starting nodes). The bottom row shows the best paths generated for the real maps at T=900.
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4.5.3 Experimental Results and Analysis

For each distribution type (real and simplified maps) we ran each algorithm (with

or without set destination) using T=120, 300, and 900 (4, 10, and 30 minutes). Because of

random factors, we ran each experiment 10 times and calculated mean and standard deviation

of the results. Due to space limitation, only a subset of the experimental results are presented

(e.g. Table 4.1, 4.2 and Figure 4.7–4.9).

For all the experiments we performed, algorithm running time exhibited the same

trend: from the fastest to the slowest we have LHC-GW-CONV( E), EA( E) and LHC-GW-

PF( E). For example, with the simplified unimodal map, the LHC-GW-PF algorithm ran for

9.419, 41.952 and 164.383 seconds for T=120, 300 and 900 respectively. Because the EA( E)

algorithms use the path generated from other algorithms as seeds in the initial population,

they are generally slower. However, most of the running time is spent generating the initial

population and the evolutionary part of these algorithms only takes a fraction of a second.

LHC-GW-PF( E) algorithms are always the slowest, and that is why we do not include them

as seeds in the EA algorithms. For the group of algorithms with set destination, we perform

path planning both from the starting node to the ending node and also from the ending node

to the starting node (then reverse the path), and then select the better one; we include both

runs when we record the algorithm running time. Therefore, the “ E” algorithms always take

more time to complete compared to the version before modification.

For the simplified unimodal map, the LHC-GW-CONV( E) algorithms are the clear

winners in each respective group if we consider both the Efficiency and the running time. For

the group of algorithms without set destination, all algorithms gave above 99.5% Efficiency .

The LHC-GW-CONV algorithm is always the fastest (e.g. 6.483 seconds for T=900) and

achieved 100% Efficiency in all cases. The EA-Dir and EA-Path algorithms also achieved

100% Efficiency , but at a much slower speed (e.g. 62.236 seconds for T=900 with EA-Path).

For the group of algorithms with set destination, the LHC-GW-CONV E algorithm is also

the fastest (e.g. 14.173 seconds for T=900) and achieved 99.955% or higher Efficiency in all
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(%) Simplified (Efficiency) Real (EfficiencyLB)
T 120 300 900 120 300 900
LHC-GW-CONV 88.89 96.80 98.35 81.64 93.97 97.75
LHC-GW-PF 96.63 96.70 96.07 90.28 92.43 96.67
EA-Dir 98.59 97.31 98.80 90.62 94.96 97.96
EA-Path 98.66 98.09 99.07 91.18 95.71 98.02

Table 4.1: Algorithm efficiency comparison for bimodal distribution

(seconds) Simplified Real
T 120 300 900 120 300 900
LHC-GW-CONV 0.90 2.26 7.35 0.52 1.16 5.66
LHC-GW-PF 9.44 29.11 131.35 2.61 8.64 92.38
EA-Dir 9.36 15.56 41.71 10.97 16.69 35.11
EA-Path 10.63 22.89 66.31 12.61 21.20 53.73

Table 4.2: Algorithm speed comparison for bimodal distribution

cases. Although the EA-Path E algorithm achieved slightly better Efficiency (less than 0.1%

improvements), it did so at the cost of more running time (e.g. 78.334 seconds for T=900).

For the simplified bimodal map, the LHC-GW-CONV( E) algorithms did not always

perform well because it does not handle the space between the two modes very well, especially

for very short flight time. Fig. 4.7 shows the Efficiency comparison of the group of algorithms

without set destination. The LHC-GW-PF( E) algorithms still achieved 96% and above

Efficiencies, but they are also the slowest. The EA( E) algorithms are more attractive in

this case because they achieved the best Efficiencies (98.095%+ for EA and 97.857%+ for

EA E) very quickly.

For the simplified bimodal with overlap map, the EA( E) algorithms achieved the

best Efficiencies (98.302%+ for EA and 98.653%+ for EA E), but the LHC-GW-CONV( E)

algorithms were able to achieve equivalent or slightly lower Efficiencies (97.391%+ for LHC-

GW-CONV and 98.429%+ for LHC-GW-CONV E) with much less time (8.283 seconds and

16.296 seconds for T=900 respectively). Fig. 4.8 shows the Efficiency comparison of the

group of algorithms with set destination.
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Figure 4.7: Efficiency comparison for group of algorithms without set destination for simplified
bimodal map

Figure 4.8: Efficiency comparison for group of algorithms with set destination for simplified
bimodal with overlap map
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Figure 4.9: EA-Path performance for the real and simplified bimodal with overlap map

For each of the three real distribution maps (unimodal, bimodal, and bimodal with

overlap), since PCp∗ is unknown, we can only calculate EfficiencyLB . We observed that the

EfficiencyLB for each real map is very close to the EfficiencyLB for each of the counterpart

simplified maps, and we hypothesize that the Efficiency for each real map should also be

close to the Efficiency for each of the counterpart simplified maps. Fig. 4.9 shows an example

of the EA-Path algorithm performance for the real and simplified bimodal with overlap map.

The columns in the front row are EfficiencyLB values and the columns in the back row are

Efficiency values. Based on this graph, we estimate that the Efficiency values for the real

map here are above 97% for all T values.

To further evaluate our algorithms, we tested our algorithms on a more complex

multimodal distribution map generated by mixing multiple Gaussian distributions with

various standard deviations; see Fig. 4.10. The LHC-GW-CONV algorithm achieved 97.206%

EfficiencyLB in 5.516 seconds and the EA-Path algorithm achieved 97.609% EfficiencyLB in

63.984 seconds. Note here that the Efficiency percentiles can only be better.

92



www.manaraa.com

Figure 4.10: More complex multimodal probability distribution map

In every experiment, the EA( E) algorithms always achieved the best Efficiency

and EfficiencyLB . Therefore, if the operator has some time for computation, they seem to

be attractive candidates. If the operator needs a path generated quickly, the LHC-GW-

CONV( E) algorithms can be used. Although the LHC-GW-PF( E) algorithms do not work

as well with these three distribution maps, initial tests on other distribution types such as

sparse map and small-multimodal map suggest that they could perform better than other

algorithms.

4.6 Conclusions and Future Work

We model the UAV path planning problem in WiSAR as a discretized combinatorial

optimization problem and design two groups of algorithms for path planning with or without

a set destination using algorithms based on Local Hill Climbing, and Evolutionary Algorithms

using novel techniques such as “global warming effect” and path crossover/mutation. We

evaluate the performances of these algorithms on six (3 simplified, 3 “real”) representations of

typical WiSAR probability distribution maps, unimodal, bimodal, and bimodal with overlap,

with various flight times and use the simplified maps to validate true efficiencies in real maps.

Experimental results show that our algorithms can generate good paths with high Efficiency
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or estimated Efficiency that approximate the optimal solution within reasonable computation

time. Specifically, the LHC-GW-CONV( E) algorithms should be used for unimodal maps,

and if a few minutes computation time is available, because the EA( E) algorithms always

keep the best path found from seed algorithms, they can always find a path with the highest

Efficiency compared with other algorithms experimented.

Experimenting with more types of distribution maps, designing a more advanced

global warming search model, allowing 8-connected path planning, and dealing with dynamic

distribution maps that change over time are all natural extensions for future work. Specifically,

the set of algorithms with set destinations enables us to further investigate how the path

planning task can be segmented so human operators can plan more strategically while the

algorithms plan tactically, and what interface can make this an intuitive, smooth, and effective

task for the UAV operator in WiSAR operations.
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Chapter 5

Paper: Hierarchical Heuristic Search Using A Gaussian Mixture

Model for UAV Coverage Planning1

Abstract

During UAV search missions, efficient use of UAV flight time requires flight paths that

maximize the probability of finding the desired subject. The probability of detecting the

desired subject based on UAV sensor information can vary in different search areas due to

environment elements like varying vegetation density or lighting conditions, making it likely

that the UAV will only be partially able to detect the subject. This adds another dimension

of complexity to the already difficult (NP-hard) problem of finding an optimal search path.

We present a new class of algorithms that account for partial detection in the form of a

task-difficulty map and produce paths that approximate the payoff of optimal solutions. The

algorithms use the Mode Goodness Ratio heuristic, which uses a Gaussian Mixture Model to

prioritize search subregions. The algorithms search for effective paths through the parameter

space at different levels of resolution. We compare the performance of the new algorithms

against two published algorithms (Bourgault’s algorithm and LHC-GW-CONV algorithm)

in simulated searches with three real search and rescue scenarios, and show that the new

algorithms outperform existing algorithms significantly and can yield efficient paths that

yield payoffs near the optimal.

1Submitted to and accepted by SMC-B (IEEE Transactions On Systems, Man And Cybernetics Part B,
Cybernetics) journal. Authors are Lanny Lin, Michael A. Goodrich and Spencer Clark
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5.1 Introduction

Mini-UAVs (Unmanned Aerial Vehicles) are becoming useful tools in many recon-

naissance, remote-sensing, surveillance, and search operations thanks to advances in UAV

technologies. They can help firefighters map forest fires, help news crews provide coverage,

help police monitor crowds, and help wilderness search and rescue workers locate a missing

person. In these applications, the UAV uses its on-board cameras to provide useful visual

information in support of the specific operation.

This paper focuses on using mini-UAVs to support Wilderness Search and Rescue

(WiSAR). The aerial view from a UAV enables WiSAR workers to survey large areas of

importance in real time [41]. Search efficiency is very important in WiSAR because, as time

progresses, the survivability of the missing person decreases and the effective search radius

increases by approximately 3km/hour [120]. Therefore, a good flight path should rapidly

maximize the probability of finding the missing person to make efficient use of the limited

flying time.

Each UAV path accumulates information over time as the UAV’s sensors scan the

ground. As illustrated in Fig.5.1, various paths do so in different ways depending on how

information is distributed in the environment. The goal is to maximize the total probability

of detection. There are two quality metrics for the probability-maximizing path planning

problem [62, 115, 130]. First, find the path that maximizes the Cumulated Detection

Probability (CDP) after a specific flight time (blue vertical dotted line). Out of the three

example paths in Fig. 5.1 path 3 becomes the winner. Second, find the path that achieves

a desired CDP in the shortest amount of time (red horizontal dotted line). Path 1 would

become the winner out of the three, instead. We model the problem following the first

approach.

When using a UAV’s on-board camera to assist WiSAR operations, factors such as

dense vegetation, lighting conditions, shadows, or distance between the camera and the ground

can lower the quality of the UAV aerial view and decrease the probability of detection [82].
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Figure 5.1: Two approaches to the probability-maximizing path planning problem. With
three paths generated by various algorithms, the first approach prefers the path maximizing
the Cumulated Detection Probability (CDP) given a specific flight time (Path 3 is the winner)
and the second approach prefers the path achieving a specified CDP in the shortest amount
of time (Path 1 is the winner)

.

This can be attributed to both sensor and human limitations (such as limited attention

span and cognitive workload). We propose to represent partial detection in the form of a

task-difficulty map, where a more difficult subregion on the map has lower probability of

detection. Using a task-difficulty map enables us to integrate geo-referenced and spatial-

related sensor constraints into the problem formulation, which supplements traditional sensor

modeling methods (e.g., [11]) and potentially improves search performance in real world

search scenarios. Because detection difficulties vary in different search subregions, flying

patterns such as lawnmower and Zamboni don’t guarantee optimal coverage. Integrating the

task-difficulty map into path planning adds another dimension of complexity to the already

difficult problem and causes the performance of existing greedy-type algorithms (Bourgault’s

Algorithm [11] and LHC-GW-CONV [69]) to suffer.

We model the path planning problem as a discrete combinatorial optimization problem,

and propose a new heuristic, the Mode Goodness Ratio. This heuristic uses a Gaussian Mixture
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Model to identify and prioritize search subregions. We then present two new algorithms (Top2

and TopN ) that utilize the heuristic in hierarchical path planning by forcing the UAV to

visit high priority subregions. The hierarchical structure enables the algorithms (a) to cluster

probability volumes and (b) to prioritize search subregions at different levels of resolution. It

also makes it easy to parallelize the two new algorithms and improve computation speed. We

compare the performance of the new algorithms against two published algorithms (Bourgault’s

Algorithm [11] and LHC-GW-CONV algorithm [69]) in simulated searches based on three

real search and rescue scenarios. Results show that the new algorithms outperform existing

algorithms significantly and can yield efficient paths that approximate the payoff of the

optimal path.

The contributions of the paper are (a) the introduction of Gaussian Mixture Model

(GMM) to compute the Mode Goodness Ratio heuristic, which can be used to prioritize

search subregions in a hierarchical planner, (b) two new path planning algorithms that utilize

the Mode Goodness Ratio heuristic to improve path-planning performance, and (c) the use

of a spatial representation (task-difficulty map) in modeling sensor detection probability with

terrain and vegetation information and incorporating that into UAV path planning.

Section 5.2 defines the problem and the metrics used to evaluate algorithm performance.

Section 5.3 discusses related literature. Section 5.4 first reviews two existing algorithms

and then demonstrates the weakness of these algorithms with a synthetic scenario. This

section then presents the Mode Goodness Ratio heuristic and the two new algorithms (Top2

and TopN ). Section 5.5 compares algorithm performance with three real search and rescue

scenarios. Section 5.6 discusses the limitations of the approach, and Section 5.7 presents the

summary.
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5.2 Problem Formulation

5.2.1 Problem Framework

Typical UAVs (fixed-wing or rotorcraft) are highly mobile and variable, but we will

assume a set of useful constraints on their capabilities: they have a gimbaled camera, can

maintain a constant height above ground and can travel at constant speed. A gimbaled

camera enables the camera to aim straight down even when the UAV is performing roll or

yaw maneuvers. We assume that the UAV’s speed is much higher than the speed of the

missing person and treat the missing person as stationary. At every UAV flight time step,

we treat the camera footprint of the search area as a glimpse. This way we can discretize

the search area, and model the UAV path planning problem as a discrete combinatorial

optimization problem with respect to probability accumulated and define it following the

framework described in [126].

The search space is represented as a finite, connected graph G = (V,E). V denotes

the set {v1, ..., vn} of vertices of G, and E denotes the set of edges. Each edge in E can be

viewed as an unordered pair of vertices {vi, vj}. The missing person is located at one of the

vertices of G. A given probability distribution map for the missing person is discretized to

match graph G, with pi being the probability that the missing person is located at vertex vi.

It is obvious that
n∑
i=1

pi = 1. (5.1)

The UAV search is conducted in discrete time. During each time step, the UAV

camera footprint can cover one vertex. For a desired flight with T time steps, let S denote

the set {0, 1, 2, ..., T}. The UAV’s motion is constrained by the structure of the graph G. Let

Ψ be the set of functions ψ : S 7→ V with the property that for any two consecutive integers t

and t+ 1 in S, either ψ(t) = ψ(t+ 1) or {ψ(t), ψ(t+ 1)} ∈ E. Here Ψ represents all possible

paths, and under path ψ, vertex ψ(t) is searched during step t. The conditions on the set Ψ
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guarantee that at each time step the UAV camera footprint will either remain at the current

vertex (only possible for a rotorcraft) or move to a neighboring vertex.

Even when the UAV camera footprint covers the vertex occupied by the missing

person, it is not certain that a detection will occur. The probability of detection is described

by a glimpse probability function g, which is defined by a given task-difficulty map. The

task-difficulty map is a spatial representation of sensor detection probability and defines areas

where it is difficult to detect the missing person (with lower probability of detection), with di

being the task-difficulty level at vertex vi. Let dmax be the maximum task-difficulty level in

the given map. If at time step t the UAV camera footprint covers vertex v, then let g(v, t) be

the probability that a detection will occur, given that the missing person is at vertex v. We

model this as

g(vi, t) = 1− di
dmax + 1

. (5.2)

so that more difficult tasks (higher di values) have lower glimpse detection values, g.

Let PT (ψ) represent the Cumulative Detection Probability (CDP) for path ψ ∈ Ψ

with T time steps. For each (cell, time) pair (i, t) with 1 ≤ i ≤ n and 0 ≤ t ≤ T , we define

the probability of failure f(i, t, ψ) by

f(i, t, ψ) =

 1− g(vi, t) if ψ(t) = vi

1 otherwise.
(5.3)

Let Dj represent a detection on the jth observation so Dj is a detection failure. Then the

probability of failing to detect the the missing person after N observations of vertex vi given

the missing person is at vertex vi is the joint probability P (D1, D2, ..., DN |vi). Assuming

each observation is conditionally independent of each other (typical in the WiSAR literature),

we can rewrite the joint probability as

P (D1:N |vi) =
N∏
j=1

P (Dj|vi), (5.4)
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and the probability of detecting the missing person after N observations is

P (D1:N |vi) = 1− P (D1:N |vi), (5.5)

which is equivalent to

P (D1:N |vi) = 1−
T∏
t=0

f(i, t, ψ), (5.6)

where N is how many times vi shows in path ψ. Then PT (ψ) can be computed by

PT (ψ) =
n∑
i=1

pi

(
1−

T∏
t=0

f(i, t, ψ)
)
, (5.7)

where pi is the probability that the missing person is located at vertex vi. Define ∃ψ∗∈Ψ

such that for any alternate path ψ′∈Ψ, PT (ψ∗)≥PT (ψ′). Our goal is to find the optimal path

ψ∗ that produces the maximum CDP (path 3 in Fig.5.1 at T = 600 if there are only three

possible paths) or find an efficient path ψ′ that produces payoff approximating the payoff of

the optimal path within reasonable computation time.

When the path needs to end at an operator-specified vertex (for easy UAV retrieval or

to join with other path segments), we simply add the constraint to the problem formulation

(only add edges to a path that does not violate the constraint so the UAV has enough time to

reach the end point). Also for fixed-wing UAVs, additional motion constraints (such as not

allowing the UAV to fly backward) are also introduced as velocity constraints affecting edges

{ψ(t), ψ(t1)}, effectively creating a directed graph. Both proposed path planning algorithms

satisfy these constraints.

5.2.2 Performance Metrics

We will use two measures of algorithm performance: the quality of the path and the

run-time of the algorithm. Run-time is self-explanatory, but we need a measure of path

quality. Ideally the efficiency of an algorithm should be computed with the following equation:
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Efficiency(ψ′) =
PT (ψ′)

PT (ψ∗)
, (5.8)

where ψ∗ is the optimal path. However, because we do not know what ψ∗ is, we bound the

efficiency. Let ψteleport be defined as the path constructed as follows: (a) deduct the time

needed to move from the start vertex to the nearest vertex with non-zero pi (plus time for

doing the same with the end vertex if specified), and (b) at each step the UAV teleports to

the vertex that allows the UAV to collect the highest amount of probability after considering

the task-difficulty at that vertex. Then, all the probability collected during the teleport flight

is summed, giving EfficiencyLBi for path i:

EfficiencyLBi =
PT (ψi)

PT (ψteleport)
(5.9)

Since PT (ψ∗) ≤ PT (ψteleport), Efficiency can be no worse than EfficiencyLB , so the latter sets

a lower bound for the true efficiency. Note that the majority of the teleport path ψteleport

is made up of disjointed points because the UAV would be “jumping” (teleporting) from

vertex to vertex, always landing on the vertex that promises highest amount of probability

collectible.

5.3 Related Work

Many path planning algorithms in the literature address obstacle avoidance while

planning a path to reach a destination using A* [92], D* [114], Voroni diagrams [8], or

probability roadmaps and rapidly-exploring random tree (RRTs) [91]. Hierarchical heuristics

approaches were also developed, such as Hierarchical A* (HA*) by Holte et al. [51], hierarchical

task-based real-time path planning by Naveed et al. [74], and Hierarchical-AO* (HiAO*) by

Meuleau and Brafman [84]. The algorithms we present solve a different path planning problem

by generating paths that make efficient use of the limited travel time and maximizing the

probability of finding the missing person. This is similar to the Vehicle Routing Problem [64]
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and the Orienteering Problem (OP), which is a variation of the Traveling Salesman Problem

(TSP) and is known to be NP-Hard [109]. However, our path planning problem is even

more difficult with added challenges of repeated visits and partial detection. Tasgetiren

and Smith propose a Genetic Algorithm in [122] to solve OP. Liang and Smith present

an Ant Colony Optimization approach that uses an unusual sequenced local search and a

distance-based penalty function for path planning [67]. These algorithms work well with OP

problems with few nodes (21–100) but can be slow with many nodes. Unfortunately, they do

not allow repeated visits and do not support partial detection. Although classic dynamic

programming [108] method can solves TSP, because TSP is NP-hard, it cannot be solved

in polynomial time, unless P=NP. The method suffers the “curse of dimensionality” and

does not scale well with complex problems. Reinforcement learning (approximate dynamic

programming) methods [7, 117] have four main sub-elements: a policy, a reward function

(immediate payoff), a value function (long-term payoff), and optionally, a model of the

environment. Because in our path planning problem, a node can be visited multiple times,

and because our Bayesian approach allows for partial collection of information, the score/prize

collected for each visit is different. The reward function and the value function both become

path dependent, the state space becomes exponentially large. We seek a real-time solution

that scales well when search area and flight duration expand, therefore we prefer a heuristic

approach.

In the 1950’s, Koopman discussed the uncertainties in the act of detecting hostile

submarines with radars and proposed a concept called the instantaneous probability of

detection by one glimpse [61]. He presented simple search algorithms and demonstrated

how search effort should be distributed given a prior probability distribution of the target

and known law of detection when only a limited total amount of search effort (or time) is

available [62]. Stone [115] presents various search plans with partial detection models using

Lagrange multipliers and maximization of Lagrangians in finding stationary target in very

basic search problems when no false targets are present. Washburn [130] discusses how to
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construct optimal search paths for different search problems. The author also developed

detection models based on radar/sonar and expanded the fundamentals of search theory to

include moving targets. In [11] Bourgault et al. describe a Bayesian framework for UAV

trajectory planning to maximize the chances of finding the target given restricted time.

Partial detection was modeled based on a downward-looking millimeter wave radar, and a

one-step lookahead method was used for path planning using posterior distributions obtained

from Bayes filter [125] updates. More recent work includes [85] where Niedfeldt et al. present

a UAV path planning algorithm that utilizes probability of detection and maximizes the

probability of identifying an object using a N-step lookahead method, and [99] where Ryan

and Hedrick developed a control formulation for a fixed-wing UAV that minimizes the entropy

of an estimate distribution over a receding horizon for searching a moving target over a fixed

time horizon. N-step lookahead and receding horizon methods are greedy-type algorithms that

run into scalability bounds and generate sub-optimal paths in situations when a complicated

detection model is used, such as a task-difficulty map.

Koester compiled statistics from large set of past WiSAR incidents [60]. These statistics

can be used to construct probability distribution maps. Ferguson describes how GIS can be

used to segment search areas into probability subregions [31]. Goodrich et al. [41] describe

how a probability distribution of likely places to find the missing person can be useful for UAV

path planning. Lin and Goodrich [70] propose a Bayesian model to create such a distribution

based on terrain features and past human behavior data. The model has been evaluated using

real search and rescue scenarios at George Mason University’s MapScore web portal [18] and

performed well compared to other statistical models. Stone et al. used posterior probability

maps and successfully located the wreckage of Air France Flight 447 [116]. Metrics such as

Koopman’s instantaneous probability of detection by one glimpse [61], “seeability” proposed

by Morse et al. [82], and terrain and vegetation information obtained from USGS [70] can be

used to build a task-difficulty map representing probability of detection in different search

subregions.
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The Mode Goodness Ratio heuristic is used to evaluate the “peakedness” of a bivariate

Gaussian. The traditional way to evaluate the peakedness of a distribution uses kurtosis [4].

Mardia [73] extends the concept to multivariate distributions. Because multivariate kurtosis

is difficult to compute and may show inconsistency in the meaning the peakedness of a

distribution, Khurshid et al. [59] extend Horn’s measure of peakedness [52] into a measure

for bivariate normal distributions. The heuristic we propose is an even simpler method to

measure the peakedness and is well-adapted to support hierarchical search algorithms.

5.4 Path Planning Algorithms

In this section we review two existing path planning algorithms, Bourgault’s Algo-

rithm [11] (referred to as BA from here on) and LHC-GW-CONV [69], and demonstrate the

weakness of these algorithms with a synthetic scenario. Next we formally define the Mode

Goodness Ratio heuristic. Then we present the Top2 & TopN algorithms.

5.4.1 BA and LHC-GW-CONV algorithms review

The BA algorithm [11] is a Bayesian approach to the UAV path planning problem.

Given a prior probability distribution of the missing person, it uses the Bayes filter as

described in [125] to compute the posterior probability distribution at every time step. The

probability of detection follows an active model of a downward looking millimeter wave radar

where signal power is determined by factors such as emitted power, antennae footprint, and

sensor distance to the target. Distributions are discretized into a grid for calculation and a

(greedy) one-step lookahead method is used to determine which cell the UAV should fly to

next (the grid cell with the highest posterior probability).

Our formulation in Section 5.2 can be viewed as a Bayes filter with the following

assumptions: pi is the prior probability, g(vi, t) is the detection likelihood, and we assume

a stationary object of interest. Instead of using a greedy approach, we look ahead much

further down the path. In order to address the increased computational complexity, we use a
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heuristic (introduced in the next section) and rely on a hierarchical approach to improve the

search for efficient paths. Because the speed of our algorithms is very fast, our algorithms

can turn into a “greedy” algorithm with extended horizon when dealing with moving object

or changing environment.

The sensor model in BA uses target distance and signal strength, which implicitly

considers the spatial information of the environment. We use a task-difficulty map to take

advantage of explicit prior knowledge of the environment and how it affects the detection

probability spatially. For a fair comparison, we used the same downward-looking camera

visual sensor model when we implemented the BA algorithm, and we note that our algorithm

can use detection models similar to the one used in [11].

The LHC-GW-CONV algorithm [69] is a combinatorial optimization approach to the

UAV path planning problem. It discretizes the given probability distribution of the missing

person and the task-difficulty map into a grid and uses a Local Hill-Climbing algorithm to

select the next cell to fly to (the grid cell with the highest one glimpse detection probability).

Spatial averaging is performed by convolving the combined probability distribution and the

task-difficulty map using box filters. This serves as the tie-breaker, enabling the algorithm to

look beyond local neighbors in order to plan paths toward broader areas with high probability.

Even with spatial smoothing a typical problem of LHC is that it favors local maxima, resulting

in the UAV getting stuck in a local probability hill for too long before it can move to another

probability hill. To overcome the problem, a “Global Warming” technique is used2. After

each “ocean rise”, a new path is created, and the best path is returned as the final path

found. Equation 5.10 shows how the probability pi that the missing person is at vertex vi

2The name “Global Warming” comes from the metaphor where the “ocean surface” represents all the grid
cells with zero probability and the “islands” represent probability hills with non-zero grid cells; as the “ocean”
rises the volume of probability hills above the water decreases.
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changes when the “ocean” rises.

p′i ←

 pi − nC, if pi > nC

0, otherwise
(5.10)

where C is a constant height of each “ocean rise” and n is how many times the “ocean” will

rise.

Both BA and LHC-GW-CONV are greedy algorithms. The advantages of greedy

algorithms include low computational cost and flexibility in quickly adapting to changes (e.g.,

a changing environment or a moving target). A major drawback is that such algorithms

tend to get stuck in local maxima. We can demonstrate this using the synthetic scenario in

Fig.5.2, which shows a multi-modal distribution of the missing person location and a simple

task-difficulty map with three difficulty levels.

For a UAV path where T = 900, if the UAV starts from a subregion with low

task-difficulty (upper left corner), the BA algorithm achieved 65.99% EfficiencyLB and the

LHC-GW-CONV algorithm achieved 96.28% (averaged for 10 runs); Fig.5.3 shows the

paths generated by the two algoirthms. The BA algorithm’s performance is okay but not

great, while the LHC-GW-CONV algorithm performed really well (actually slightly better

than the performance of the Top2 and TopN algorithms, which we will discuss in detail in

section 5.6). But if the UAV starts from a subregion with high task-difficulty (lower right

corner), both algorithms perform poorly (much worse than the performance of the Top2 and

TopN algorithms), with BA scoring 41.91% and LHC-GW-CONV scoring 53.71% (averaged

for 10 runs) in EfficiencyLB ; Fig.5.4 shows the paths generated by the two algoirthms. This

is because both greedy algorithms fail to move the UAV quickly out of the local probability

hill. The Top2 and TopN algorithms we propose address this problem by forcing the UAV to

visit other search subregions and also allocate more flight time to subregions where the UAV

can be more efficient. In order to identify better subregions, we propose the Mode Goodness

Ratio heuristic.
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Figure 5.2: A synthetic WiSAR scenario. Left: Multi-modal probability distribution. Middle:
A simple task-difficulty map. Right: Probability collectible on first visit (combining probability
distribution and task-difficulty map).

Figure 5.3: Paths found at T = 900 when the UAV starts from a subregion with low
task-difficulty (upper left corner). Left: Path created by BA. Right: Path created by
LHC-GW-CONV.

Figure 5.4: Paths found at T = 900 when the UAV starts from a subregion with high
task-difficulty (lower right corner). Left: Path created by BA. Right: Path created by
LHC-GW-CONV.
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5.4.2 Mode Goodness Ratio

The Mode Goodness Ratio heuristic prioritizes search subregions, where each subregion

represents a cluster of probability volume that can be “collected” by the UAV sensor.

Compute the heuristic as follows: First, combine the probability distribution map and the

task-difficulty map to construct a new grid/surface G′. The value of each cell in G′ represents

how much probability can be collected the first time the cell is visited (e.g., the right part of

Fig.5.2). Second, use a Gaussian Mixture Model (GMM) to partition G′ into high quality

clusters/subregions. We subjectively set the maximum number of subregions to 5 to reduce

computational complexity.

A GMM is a probabilistic model for finding sub-populations within an overall popu-

lation and is often used for data clustering. We choose the GMM method for two reasons:

1) We can take advantage of the resulting Gaussian parameters and coefficients to estimate

the peakedness of the probability hills. 2) A GMM is a parametric method, so we can define

subregions by cluster probability volume hierarchically and search through the parameter

space.

It is important to point out that when a task-difficulty map (especially a complicated

one) is applied, the resulting grid/surface G′ is unlikely to resemble a mixture of Gaussians

and we only use GMM to approximate the probability hills.

We used the Accord.MachineLearning library in the Accord.NET framework3 to

estimate GMM parameters. We generate data points to approximate G′ (create a 2D

histogram of G′ and generate number of points proportional to each bin count) and then feed

these points to the Accord library, which first uses the K-Means algorithm to generate k

initial clusters, and then uses the Expectation Maximization (EM) algorithm to iteratively

fit data to a mixture of Gaussians. Gupta and Chen provide detailed description on how

to use EM to learn a GMM model in [44]. The results are a set of (k) scaled Bivariate

Gaussian distributions with their means, covariance matrices, and the coefficient (scale) for

3http://code.google.com/p/accord/
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each Gaussian. For completeness, Equation 5.11 shows the density function for a multivariate

Gaussian distribution.

P (x) =
1√

(2π)n|Σ|
e−

1
2((x−µ)>Σ−1(x−µ)), (5.11)

Next we identify all modes in the grid/surface G′ (using simple local hill-climbing with

verification for plateaus and ridges), and match the mean of each Gaussian to the closest

mode centroid (in case the mode has a flat peak) and then use that centroid, Ci, to represent

the subregion. Note that the number of modes in G′ can be more than the number of modes

in the probability distribution after a task-difficulty map is applied. If there are fewer than 5

modes in G′, we reduce k accordingly to reduce computation.

We evaluate three factors when computing Mode Goodness, MGi, for subregion i:

distance ratio Di, probability volume Vi, and subregion area Ai.

The first factor, the distance ratio Di, is defined as:

Di = log
( T

αi + 1

)
, (5.12)

where T is the total UAV flight time (in time steps) and αi is the L1 norm distance from the

start location of the path to the centroid of the subregion, Ci. If an end location is specified

for the path, then that distance is also added:

αi =

 ||Start− Ci||1, no End

||Start− Ci||1 + ||End− Ci||1, otherwise
(5.13)

We add 1 to the denominator in Equation 5.12 to make sure it will never be 0, and use the

log scale to reduce wide-ranging quantities to a smaller range.

The idea behind the distance ratio is that a subregion is less attractive when it takes

a large percentage of the total flight time to reach the center of the subregion because the
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trip to get there might not be very efficient. Therefore, higher Di values indicate closer

subregions.

The second factor, the probability volume Vi, is defined as:

Vi = V3σx′
i
3σy′

i

wi, (5.14)

where V3σx′
i
3σy′

i

is a constant (roughly 99.46%) representing the volume of probability under

a standard bivariate Gaussian surface within 3 standard deviations, and wi is the weight

of each Gaussian component Gi, which is the coefficient of the Gaussian in the mixture as

shown below with the property of
∑k

i=1wi = 1.

p(x) =
k∑
i=1

wiGi (5.15)

The idea behind the probability volume is that a subregion is more attractive when the

volume of probability within the subregion is high, meaning visiting the subregion has the

potential of collecting a large amount of probability. Therefore, higher Vi values indicate

subregions with more probability.

After rotating the axes of the bivariate Gaussian to align with the eigenvectors of the

covariance matrix Σi, the area under the surface within 3 standard deviations in both axes

can be estimated using a rectangle with width 3σy′i and height 3σx′i where σx′i and σy′i are the

square roots of the eigenvalues of the Gaussian’s covariance matrix. The area of the rectangle

Ai is the third factor in the heuristic. A larger Ai means it takes more time steps for a UAV

to cover the area. Therefore, the lower Ai is, the better the subregion.

Ai = (3σx′i)(3σy′i) = 9σx′iσy′i . (5.16)

When we divide Vi by Ai, we are basically estimating the peakedness of the Gaussian.

Then assuming the peakedness is independent of the distance ratio Di, we can multiply them
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together to compute the Mode Goodness of the subregion i:

MGi = DiViAi
−1. (5.17)

Since all we really care about is the priority order of the search subregions, we can

simplify computation by computing the Mode Goodness Ratio, MGRi, for subregion i with

respect to subregion 1 as the following:

MGRi =
MGi

MG1

=
DiViAi

−1

D1V1A1
−1 (5.18)

=
DiV3ΣSi(9σx′iσy′i)

−1

D1V3ΣS1(9σx′1σy′1)
−1

(5.19)

=
DiSi(σx′iσy′i)

−1

D1S1(σx′1σy′1)
−1

(5.20)

Naturally, MGR1, the Mood Goodness Ratio for subregion 1 with respect to subregion

1 will always be 1 and MGRi for other subregions can be less or greater than 1. By sorting

the Mode Goodness Ratios of all the subregions, we have a way of prioritizing them according

to their mode goodness.

5.4.3 Top2 Algorithm

The Top2 algorithm is designed to generate paths that force the UAV to visit the top

2 subregions in the search area. This way the heuristic-based path planner can escape from

a probability hill where task-difficulty is high and probability of detection is low. First the

Mode Goodness Ratio heuristic is used to identify the top 2 search subregions (represented

by centroids). Then, local hill climbing is used to create the shortest path segment from the

start location to the nearest centroid. If an end location is specified in the path planning

request, another path segment is created similarly from the end location to the other centroid.

The algorithm then identifies a point (vertex) equidistant from the two centroids

(the green square) and launches two path planning tasks to plan path segments from each
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centroid to that point using local hill climbing. By allocating different percentages of the

remaining flight time to these two path planning tasks, the Top2 algorithm can effectively

search within a new dimension of time allocation. The subregion with more flight time

allocated ends up with a longer path segment. Note that it is possible for the path to cover

other subregions (other than the top 2) when a lot of flight time is allocated. Fig.5.5 shows

three time allocation examples.

A coarse-to-fine search is performed starting from a low resolution (large chunks of

flight time transfered from one path planning task to the other) and gradually increasing the

resolution (smaller chunks) until the best path is found. Then the path segments are joined

together to form a full flight path. Fig.5.6 shows the pseudo-code for the Top2 algorithm.

Because we can specify how many Gaussians to fit during the GMM step, we can

actually cluster the probability hills hierarchically, and this structure enables us to search

through different hierarchy layers with different k values (e.g., top 2 out of 5, top 2 out of

4, etc.). These path planning tasks at different layers can each run the Top2 algorithm in

parallel, taking advantage of the computing power of a multi-processor system; the path with

the best performance is returned as the final result.

5.4.4 TopN Algorithm

The TopN algorithm forces the UAV to visit N subregions (5≥N>1). The algorithm

first selects the top N search subregions using the Mode Goodness Ratio heuristic. Then,

similar to the Top2 algorithm, it plans the two shortest path segments connecting the start

and end locations of the path with the nearest centroids (mode A and D respectively). Next,

the algorithm starts multiple path segments from the N centroids as shown in Fig.5.7 (N = 4

in this example), one from the centroid nearest to the start (segment 1 from mode A), one

from the centroid nearest to the end (segment 2 from mode D), and two segments for each

other centroid (segment 3–6 in mode B and C). Segment 3 and 4 are connected at the center

of mode B and segment 5 and 6 are connected at the center of mode C. The four segments
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Figure 5.5: Illustrations of the Top2 algorithms where the top is subregion 1 and the bottom
is subregion 2. Left: More flight time allocated to subregion 1. Middle: Equal flight time
allocated to both subregion 1 and 2. Right: More flight time allocated to subregion 2.

Path Top2(Point start, int T, ArrayList centroids, ProbabilityMap map, int tChunk) {
1. Find closest centroid to start c1 and time needed t1
2. Plan straight path from start to c1 and store in path1
3. Find point center equidistant from c1 and c2

map.VacuumProbability(path1);
t2min = L1dist(c1, center);
t3min = L1dist(c2, center);
double efficiency = 0;
int t2 = T-t1-t3min;
int t3 = T-t1-t2;
while (t2 ≥ t2min) {

t2 -= tChunk;
t3 += tChunk;
(e2, path2) = LHC(c1, center, t2);
(e3, path3) = LHC(c2, center, t3);
if (e2 + e3 > efficiency) {

efficiency = e2 + e3;
pathRest = JoinPaths(path2, path3)

}
}
return JoinPaths(path1, pathRest);

}

Figure 5.6: Pseudo-code for the Top2 Algorithm when no end point is specified at one layer of
the hierarchy (e.g., top 2 Gaussians out of 5) and one coarse-to-fine level defined by tChunk.
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spiral outward from the center. This technique allows the UAV to fly to the desired centroid

in a “spiral in” fashion and then leave the centroid in a “spiral out” fashion without any

overlaps, thus heuristically minimizing unnecessary revisits and still providing a good coverage

of the probability hill. Six path segments perform local hill climbing at the same time and

at each one-step lookahead, only the path segment with the maximum gain gets to add the

neighboring vertex to the path. This process continues until the remaining flight time is

just enough to connect all six segments in the shortest way possible. In the last step, path

segments are connected into one continuous path using local hill climbing. In the example

shown, segment 3 and 1 join to connect mode A and B; similarly segment 4 and 5 connect

mode B and C and segment 6 and 2 connect mode C and D. Note that by planning two

path segments from the center of the same Gaussian mode, this allows the UAV to spiral

in to the center of the mode and then spiral out without crossing paths and revisit nodes,

approximating a Fermat’s spiral (a special type of Archimedean Spiral), and improve the

search efficiency (especially for an area with relatively uniform detection probability). Fig.5.8

shows the pseudo-code for the TopN algorithm.

Similar to the Top2 algorithm, the algorithm can specify how many Gaussians to fit

during the GMM step and, in addition, search through different N values (e.g., 4 out of 5, 3

out of 5, 2 out of 5, etc.). The TopN algorithm for each hierarchy layer is run in parallel and

returns the path with the best performance as the final result.

Although the Top2 algorithm might appear similar to a special case of the TopN

algorithm where N = 2, it is not. First, the Top2 algorithm would force a path to go

through the vertex (the green square in Fig.5.5) equidistant from the two centroids; The

TopN algorithm does not have this constraint. Secondly, although both algorithms would plan

two path segments and join them together to form the final path, Top2 algorithm actually

generates multiple final paths (by allocating different portion of flight time to the two path

segments) at the current hierarchy and then searches for the one with the best turnout. The

TopN algorithm, however, only generates one final path at the current hierarchy. At each
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Figure 5.7: Illustrations of the TopN algorithms with top 4 subregions (k = 5 and N = 4).

time step, only the segment with the maximum gain in the next move grows (deducting a

time step from the remaining flight time), until the remaining flight time is just enough to

connect the two path segments. And with only one path generated, there’s no need to search

further at the current hierarchy.

Although simple, the Top2 and TopN algorithms become powerful when combined

with the MGR heuristic and a hierarchical structure.
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Path TopN(Point start, Point end, int T, ArrayList centroids, ProbabilityMap map) {
1. Find closest centroid to start c1 and time needed t1
2. Remove c1 from ArrayList centroids
3. Plan straight path from start to c1 and store in path1

map.VacuumProbability(path1);
4. Find closest centroid to end cN and time needed tN
5. Remove cN from ArrayList centroids
6. Plan straight path from end to cN and store in path2N

map.VacuumProbability(path2N);
int TLeft = T - t1 - tN;
Path path2 = new Path();
Path path2.add(BestNeighbor(c1));
Path path2NMinus1 = new Path();
Path path2NMinus1.add(BestNeighbor(cN));
ArrayList segments = new ArrayList();
ArrayList segments.add(path2);
ArrayList segments.add(path2NMinus1);
foreach (Point c in centroids) {

Path p1 = new path();
p1.add(c);
Path p2 = new path();
p2.add(BestNeighbor(c));
segments.add(p1);
segments.add(p2);

}
while (EnoughTimeToJoinAllSegments(TLeft)) {

Path path = SegmentWithBestNeighbor(segments);
Point p = BestNeighbor(p.lastPoint());
path.add(p);
map.VacuumProbability(p);
TLeft–;

}
return JoinPaths(path1, path2N, segments);

}

Figure 5.8: Pseudo-code for the TopN Algorithm with end point specified at one layer of the
hierarchy (e.g., top 4 Gaussians out of 5).
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5.5 Experiment Results and Analysis

5.5.1 Experiment Set Up

We selected three real WiSAR scenarios to test the performance of the proposed

algorithms for ecological validity. All three scenarios were obtained from George Mason

University, and all came from the International Search and Rescue Incident Database (IS-

RID) [60]. In each scenario, the missing person’s Last Know Position (LKP) is at the center

of a 2.4km×2.4km search area, therefore, we always start the UAV path from the center

of the map. The probability distribution map of the missing person for each scenario is

generated using the Bayesian model presented in [70]. These probability distribution maps

have been evaluated at George Mason University’s MapScore web portal [18] and performed

better than most other models evaluated4. The task-difficulty map for each scenario is built

using vegetation density data downloaded from the USGS web site and categorized into

three difficulty levels (sparse, medium, and dense). Although this method only considers

the vegetation density, it gives us a reasonable task-difficulty map and serves well for the

purpose of demonstrating algorithm performances5. The probability distribution maps and

the task-difficulty maps are discretized into 100×100 grids.

For each scenario, we compare the performance of the BA, LHC-GW-CONV, Top2, and

TopN algorithms in EfficiencyLB and running time for three flight durations (T = 300, 600, 900,

equivalent to 10, 20, and 30 minutes). Because we re-implemented the BA algorithm in

MATLAB and the rest algorithms in C#, for a fair comparison we omit the running time

for the BA algorithm. We also present the performance of the Top2 and TopN algorithms

for just one hierarchy layer to demonstrate that the two algorithms can achieve much better

EfficiencyLB in comparable running time with even arbitrary parameters (k = 5 Gaussians

and N = 3 for top 3 subregions). In all the experiments we did not specify the ending

4Scoring 0.8184, 0.9858, and 0.9892 on a [-1,1] scale where the higher the score the better.
http://sarbayes.org/projects/

5In real wilderness search and rescue operations, these maps would be further improved by domain experts
before they are used for path planning.
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Figure 5.9: Satellite imagery of the search area for the HikerPaul scenario (near the Grayson
Highlands State Park in Virginia) showing the vegetation density. The Last Known Position
(LKP) of the missing person is at the center of the image.

location for the UAV because the BA algorithm does not support this feature. All the other

algorithms, however, do support this feature.

Experiments were performed in simulated searches and not on-board real UAVs. All

paths generated in the experiments were for a hexacopter although the algorithms also work

for fixed-wing UAVs. All experiments were run on a Intel 4-core i7-2600 PC with 16GB

of memory. For each scenario we ran 10 experiments and recorded the mean and standard

deviation of EfficiencyLB and running time. Due to space limitations, only a subset of the

experiment results are presented.

5.5.2 Experiments Results and Analysis

In the first WiSAR scenario (HikerPaul), an elderly couple was reported missing

near the Grayson Highlands State Park in Virginia (Fig.5.9 shows a satellite imagery of the

search area for the scenario). In the second WiSAR scenario (NewYork53), a 46 year old

male camper was reported missing near Adirondack Park in upper state New York. In the
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Figure 5.10: The HikerPaul scenario. Left: Probability distribution map. Middle: Task-
difficulty map. Right: Surface after combining the probability distribution map and the
task-difficulty map.

third WiSAR scenario (NewYork108), two teenage female hikers were reported missing near

West Chesterfield in Massachusetts. For each scenario the Last Known Position (LKP) of

the missing person is in the center of the search region. Fig.5.10, 5.13 and 5.15 show the

probability distribution map (left) and the task-difficulty map (middle) for these scenarios.

The right part of the figure shows the resulting surface for each scenario when we combine the

probability distribution map and the task-difficulty map, which is the amount of probability

the UAV can collect on its first visit to each vertex (or grid cell). The task-difficulty maps

indicate that large areas of these search regions were covered with dense vegetation, which

makes detecting the missing person more difficult. There are also small subregions with sparse

vegetation (higher probability of detection). Fig.5.11, 5.14 and 5.16 show the paths generated

by the BA, LHC-GW-CONV, Top2, and TopN algorithms for each scenario, respectively.

The teleport paths for these scenario are not shown because they are mostly made up of

disjointed points. Note that the paths sometimes revisit vertices that have already been

visited (path segments cross with previous segments), but the combined surfaces we show in

Fig.5.10, 5.13 and 5.15 (right) only represent the amount of probability the UAV can collect

on its first visit. Each surface is updated after each vertex visit to reflect the amount of

probability collectible on the next visit.

For the HikerPaul scenario, Fig.5.11 shows that both the BA and LHC-GW-CONV

greedy-type algorithms generated paths that centered around the starting point and could

120



www.manaraa.com

Figure 5.11: Paths generated for HikerPaul scenario with T = 900 a) BA b) LHC-GW-CONV
c) Top2 d) TopN

Figure 5.12: The Gaussian Mixture identified for the HikerPaul scenario with T = 900 and
k = 5. The numbers show the ranking of the Gaussians using Mode Goodness Ratio. Left:
Gaussians in 2D. Right: Gaussians in 3D.

Table 5.1: Algorithms EfficiencyLB and running speed comparison for the HikerPaul scenario.
All numbers shown are averages of 10 runs. All EfficiencyLB standard deviations are below
0.1.

EfficiencyLB (%) Speed (seconds)
T 300 600 900 300 600 900
BA 56.95 60.07 57.11 - - -
LHC-GW-CONV 60.18 56.76 55.18 0.30 0.47 0.98
Top2 (1 layer) 66.68 65.21 66.08 0.24 0.30 0.41
TopN (1 layer) 76.19 71.02 68.26 0.25 0.24 0.22
Top2 (Hierarchy) 78.67 73.81 72.75 0.73 0.84 1.19
TopN (Hierarchy) 81.43 75.48 74.13 1.52 1.73 1.68
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Figure 5.13: The NewYork53 scenario. Left: Probability distribution map. Middle: Task-
difficulty map. Right: Surface after combining the probability distribution map and the
task-difficulty map.

not break away from the probability hills near the center of the search area. The Top2

algorithm, on the other hand, directed the UAV to cover the tall probability hill on the left

side of the search area, and the TopN algorithm additionally directed the UAV to cover

subregions in the lower right of the search area where more probability can be accumulated.

Fig.5.12 demonstrates how a GMM can be used to prioritize search subregions and shows the

5 Gaussians identified when we performed the Gaussian fitting for the HikerPaul scenario

with T = 900 and k = 5. The Gaussians are ranked using the Mode Goodness Ratio heuristic

values (1.39, 1.01, 1, 0.87, and 0.46 respectively). Table 5.1 shows the performance of the

four algorithms and also the Top2 and TopN algorithms with specific parameters (Number of

Gaussians to fit: k = 5 and top N subregions for TopN algorithm: N = 3). The Top2 and

TopN algorithms clearly outperform the BA and LHC-GW-CONV algorithms (whether using

arbitrary parameters or search through the hierarchy) with significantly better EfficiencyLB .

Searching through the hierarchy generated more efficient paths than only working with one

layer of the hierarchy. The TopN algorithm also achieved slightly better EfficiencyLB than

the Top2 algorithm. When using arbitrary parameters (only generating a path for one layer

of the hierarchy), both the Top2 and TopN algorithms are faster than the LHC-GW-CONV

algorithm. When searching through the hierarchy, the Top2 and TopN algorithm did take a

little bit longer, but still completed within 2 seconds.
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Figure 5.14: Paths generated for NewYork53 scenario with T = 900 a) BA b) LHC-GW-CONV
c) Top2 d) TopN

Table 5.2: Algorithms EfficiencyLB and running speed comparison for the NewYork53 scenario.
All numbers shown are averages of 10 runs. All EfficiencyLB standard deviations are below
0.07.

EfficiencyLB (%) Speed (seconds)
T 300 600 900 300 600 900
BA 39.95 54.27 65.08 - - -
LHC-GW-CONV 38.47 56.91 67.38 0.01 0.02 0.02
Top2 (1 layer) 54.42 66.61 72.79 0.75 0.92 0.81
TopN (1 layer) 59.15 68.78 74.54 0.70 0.77 0.69
Top2 (Hierarchy) 57.18 69.29 74.44 1.87 2.06 1.92
TopN (Hierarchy) 65.39 71.47 77.36 5.01 5.76 5.32
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Figure 5.15: The NewYork108 scenario. Left: Probability distribution map. Middle: Task-
difficulty map. Right: Surface after combining the probability distribution map and the
task-difficulty map.

For the NewYork53 scenario, Fig.5.14 shows that both the BA and LHC-GW-CONV

greedy-type algorithms generated paths that spent a good amount of time right at the

center of the search area around the starting point before sending the UAV to two other

subregions on the right. The Top2 and TopN algorithms, by contrast, did not waste any

time at the center subregion and immediately directed the UAV to cover the two subregions

on the right side of the search area. The TopN algorithm also directed the UAV to cover

a subregion in the upper right part of the search area. Table 5.2 shows the performance of

the four algorithms and also the Top2 and TopN algorithms with specific parameters (k = 5

and N = 3). The results show the same trend as with the first scenario where the Top2

and TopN algorithms outperform the BA and LHC-GW-CONV algorithms significantly in

EfficiencyLB . Even with arbitrary parameters, the Top2 and TopN algorithms generated

much more efficient paths (e.g., 59.15% for TopN with one layer vs. BA with 39.95%). The

TopN algorithm also outperformed Top2 algorithm in EfficiencyLB . When looking at the

algorithm completion time, LHC-GW-CONV algorithm is the clear winner in this scenario.

When arbitrary parameters are used, the Top2 and TopN algorithms both completed within 1

second, but when searching through the hierarchy, both algorithms took much longer (about

2 seconds for Top2 and 6 seconds for TopN) to complete.

For the NewYork108 scenario, Fig.5.16 shows that both the BA and LHC-GW-CONV

greedy-type algorithms generated paths that spent a good amount of time at the center of
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Figure 5.16: Paths generated for NewYork108 scenario with T = 900 a) BA b) LHC-GW-
CONV c) Top2 d) TopN

Table 5.3: Algorithms EfficiencyLB and running speed comparison for the NewYork108
scenario. All numbers shown are averages of 10 runs. All EfficiencyLB standard deviations
are below 0.07.

EfficiencyLB (%) Speed (seconds)
T 300 600 900 300 600 900
BA 39.92 45.34 49.39 - - -
LHC-GW-CONV 41.38 52.88 52.61 0.01 0.01 0.02
Top2 (1 layer) 58.37 54.18 57.33 0.98 0.90 1.44
TopN (1 layer) 54.03 53.91 57.91 0.92 0.83 0.97
Top2 (Hierarchy) 60.73 55.91 57.94 2.42 2.52 2.50
TopN (Hierarchy) 59.60 60.26 60.99 6.81 6.59 7.42
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the search area around the starting point before moving on to the upper right subregion of

the search area to cover the probability ridge. The Top2 and TopN algorithms, however, did

not waste any time at the center subregion and immediately directed the UAV to cover the

probability ridge at the upper right subregion of the search area. Both of them also sent the

UAV to another subregion at the lower left part of the search area where a good amount

of probability can be collected. Table 5.3 shows the performance of the four algorithms

and also the Top2 and TopN algorithms with specific parameters (k = 5 and N = 3). The

results show the same trend as with the previous two scenarios where the Top2 and TopN

algorithms outperform the BA and LHC-GW-CONV algorithms significantly in EfficiencyLB .

Even with arbitrary parameters, the Top2 and TopN algorithms generated more efficient

paths (e.g., 58.37% for Top2 with one layer vs. BA with 39.92%). In this scenario, the Top2

algorithm performed slighly better than the TopN algorithm in EfficiencyLB at T = 300

(60.73% for Top2 and 59.60% for TopN), but the TopN algorithm performed much better

than the Top2 algorithm for the other two cases. When looking at the algorithm completion

time, LHC-GW-CONV algorithm is still the clear winner in this scenario. When arbitrary

parameters are used, the Top2 and TopN algorithms both completed in about 1 second, but

when searching through the hierarchy, both algorithms took much longer (about 2.5 seconds

for Top2 and 7 seconds for TopN) to complete.

Note that the performance metric EfficiencyLB is computed using Equation 5.9, which

assumes that the UAV can teleport within the search area. Because the amount of probability

accumulated following this teleporting path can be much better than the optimal path, the

true search efficiency is likely much better than the value of the EfficiencyLB . Fig.5.17 shows

the comparison of the algorithms performance with respect to CDP collected over time for

the NewYork53 scenario when T = 900. The dotted red line represents CDP accumulated

over time if the UAV could teleport from vertex to vertex. Therefore this line represents the

theoretical CDP upperbound. If we know the optimal path and can plot the performance,

that line would most likely be somewhere below the teleport path line. The TopN algorithm
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Figure 5.17: Paths CDPs comparison at T=900 with partial detection.

(black solid line) performed the best (highest CDP value at time step 900), and the Top2

algorithm (blue dash line) ranked second. Both the Top2 and TopN algorithms outperformed

the BA and LHC-GW-CONV algorithms (the bottom two dashed lines) significantly.

Across experiments, results show that by taking advantage of the Mode Goodness

Ratio heuristic, the Top2 and TopN algorithms (even when arbitrary parameters, k = 5

Gaussians to fit and N = 3 for top 3 subregions, are used) always generated more efficient

paths than those generated by the BA and LHC-GW-CONV algorithms. When hierarchical

search is performed, the improvement from Top2 and TopN algorithms is significant. In most

cases, the TopN algorithm outperformed the Top2 algorithm. However, when hierarchical

search is performed, the Top2 and TopN algorithms did take a little longer to complete.
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5.6 Limitations and Discussion

In our problem formulation, we treat the missing person as stationary because the

speed of the missing person in wilderness is relatively low when compared with the speed

the UAV travels in. False detection is not an issue because the UAV can simply follow the

path generated to continuously collect detection probability while human operators verify

the accuracy of the detection. For other application domains where the target might be

moving or the probability distribution might be changing during search, by setting T to a

small value, we can easily adapt the Top2 and TopN algorithms to handle these situations.

The two algorithms effectively turn into greedy (a T -step look ahead approach compared to

the one-step look ahead method in [11]) algorithms with flexible time horizons and scalability.

We leave the evaluation of the two algorithms in such scenarios to future work.

In Equation 5.4, we assume that each observation at vertex vi is conditionally indepen-

dent of each other. This assumption certainly has its limitation. If the environment features

remain the same (e.g., lighting conditions, vegetation density) and the sensor platform (e.g.,

camera) has stable performance, then a high probability of no detection on the first visit might

indicate high probability of no detection on future visits. However, in practical applications,

a sensor operator’s ability to recognize the missing person from video footprint is affected by

many factors such as his fatigue level and his cognitive workload [41], especially when the

sensor operator might also be in charge of flying the UAV. In this case, the operator’s chance

performance can be regarded as independent trials (as in successive coin tosses).

The detection model used in our experiments is a simple decay model only parame-

terized by a difficulty factor. In SAR (Search and Rescue) literature, the parameters of the

decay factor could be affected by environment features and sensor properties (e.g., distance to

radar, signal strength [11]). Also we only consider vegetation density when we constructed the

task-difficulty maps. Because we use a camera sensor and keep the UAV flying at the same

height above ground, we believe this model is sufficient to show the algorithms’ capability

in handling partial detection, and we intentionally kept the sensor model and environment
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model simple for demonstration purposes. However, a more complicated sensor model and

environment model can easily be applied to the system.

Although GMM is a statistically mature method for clustering, it has several limitations.

First, convergence is not guaranteed for the iterative EM algorithm used to estimate the

Gaussian mixture. In our implementation, we re-run GMM multiple times if convergence is

not achieved to overcome the problem. Second, how many Gaussians should we fit? There is

the possibility that the Gaussians might not fit the data very well. We arbitrarily set the

maximum Gaussians to 5 to reduce computational complexity. Experiment results show that

we were still able to generate good paths. Since the Mode Goodness Ratio is only a heuristic,

as long as it provides useful information to our search most of the time, it serves its purpose.

Another limitation is that the algorithms do not handle tough terrains where the UAV

might not be able to climb fast enough to fly over the terrain. Future work should explore

how to modify the algorithms to consider such constraints and actual flight dynamics.

When defining the goodness of a subregion, MGi, we considered three factors: distance

ratio, probability volume, and subregion area. The last two factors, when combined, give us

a sense of the peakedness of a probability hill. Then we multiply the peakedness with the

distance ratio in order to compare the Mode Goodness of subregions. Here we assume the

two measures are independent of each other, which is a limitation of the heuristic. It also

creates a trade off problem. For example, when subregion A’s distance ratio is half of that of

subregion B but A’s peakedness is twice in size compared to B. A and B would still have

identical MGi values. Should they be? We leave this to future work.

Going back to the synthetic scenario we presented in section 5.4.1, Table 5.4 shows

the performance of the BA, LHC-GW-CONV, Top2, and TopN algorithms in two different

scenarios: starting from a subregion with low task-difficulty (upper left) and starting from a

subregion with high task-difficulty (lower right). When starting from a high task-difficulty

area, the BA and LHC-GW-CONV algorithms tend to get stuck in a local probability hill,

while the Top2 and TopN algorithms force the UAV to visit other subregions, therefore
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Figure 5.18: Paths found for the synthetic scenario at T = 900 when the UAV starts from
a subregion with high task-difficulty (lower right corner). Left: Path created by LHC-GW-
CONV without specifying end point. Right: Path created by LHC-GW-CONV with specified
end point at upper left corner.

achieving better paths with significant improvement. One interesting observation we noticed

is that if an ending position is specified for the desired UAV path and the ending point is in

a subregion with low task-difficulty, the LHC-GW-CONV algorithm also forces the UAV to

visit other subregions, and by doing so, improve the efficiency of the path. Fig.5.18 shows

an example where the path on the right achieved 93.60% in EfficiencyLB (computed within

0.01 second), which is slightly better than the Top2 algorithm but not as good as the TopN

algorithm. Another thing to note with this scenario is that the LHC-GW-CONV algorithm

actually did slightly better than the Top2 and TopN algorithms when the UAV starts from

a low task-difficulty area. We have noticed from various experiments that after combining

the probability distribution map and the task-difficulty map, if the resulting surface is not a

complicated one (meaning it only has a few distinctive probability hills), the LHC-GW-CONV

algorithm generally performs well. For more complicated surfaces (such as the three real

WiSAR scenarios we tested the algorithms with), the Top2 and TopN algorithms are more

reliable in generating good UAV paths.
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Table 5.4: Algorithms EfficiencyLB comparison for the multi-modal synthetic scenario at
T = 900

(%) BA LHC-GW-CONV Top2 TopN
Start from upper left 65.99 96.28 94.96 95.82
Start from lower right 41.91 53.71 93.46 95.29

In the current implementation, we used a grid representation for the probability

distribution map, task-difficulty map, and the path generated. However, the algorithms also

support other tessellation methods such as a hexagonal tessellation.

5.7 Summary

We proposed a new heuristic, the Mode Goodness Ratio, which uses Gaussian Mixture

Model to prioritize search subregions, and presented two new algorithms that utilize the

heuristic in hierarchical path planning. The hierarchical structure enables searching for better

paths through the parameter space at different scales and enables us to parallelize the two

algorithms for better performance. The probability of detecting the desired subject based

on UAV sensor information can vary in different search areas due to factors such as varying

vegetation density or lighting conditions. We represented this type of partial detection in the

form of a task-difficulty map, a spatial representation of sensor detection probability, and

incorporate it into UAV path planning. We compared the performance of the new algorithms

against two published algorithms BA and LHC-GW-CONV in simulated searches with three

real search and rescue scenarios. Experiment results showed that by using the Mode Goodness

Ratio heuristic, the two new algorithms Top2 and TopN consistently outperform the BA and

LHC-GW-CONV algorithms, yielding efficient paths that produce payoff approximating the

payoff of the optimal path.
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Chapter 6

Paper: Sliding Autonomy for UAV Path Planning: Adding New

Dimensions to Autonomy Management1

Abstract

Increased use of autonomy also increases human-autonomy interaction and the need for

humans to manage autonomy. We propose a new variation of the concept of sliding autonomy

that is useful for planning problems over a spatial region. In this sliding autonomy approach,

the user can influence the behavior of the autonomous system via three categories of input:

information, spatial constraints, and temporal constraints. We present a set of user interface

designs to implement sliding autonomy for UAV (Unmanned Aerial Vehicle) path planning to

support Wilderness Search and Rescue (WiSAR). Interactivities along these new dimensions

allow the user to allocate degrees of authority and flexibility to the robot’s algorithms. We

analyze how this approach fits in the integration challenge guidelines we identified in our

prior work and evaluate the usefulness of the approach against manual and simple pattern

path planning methods with a user study. Results show that the sliding autonomy approach

performs significantly better than the other two methods without increasing the users’ mental

workload, and the performance of the human-autonomy team outperforms either human or

autonomy working alone. We also discuss some interesting observations from the user study.

1To be submitted to JHRI (Journal of Human-Robot Interaction) journal. Authors are Lanny Lin, Michael
A. Goodrich, and Spencer Clark.
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6.1 Introduction

With the rapid advancement in technology, people are seeing increased use of autonomy

to augment human abilities and support human decision-making in many application domains

(e.g., [17, 20, 71, 96]). At the same time, increased use of autonomy also means increased

human-autonomy interaction and increased need for humans to manage autonomy [3]. Even

for so-called fully autonomous systems, human input can potentially improve the system’s

performance and safety [15]. The humans in such interactions manage autonomy because

“only people are held responsible for consequences (that is, only people can act as problem

holders) and only people decide on how authority is delegated to automata” [132].

When humans manage autonomous systems, their managerial responsibilities often

include monitoring the safety of the autonomous system, supervising autonomy to achieve

acceptable performance, and making sure autonomy is working toward the collective goal of

the overall system. In many emerging domains, the human operators are domain experts

who can use domain-specific knowledge to assist the autonomous system when it deals with

changing environments, uncertainty, and case-specific scenarios. Therefore, it is necessary to

design tools and interfaces that enable human users to manage the autonomous behaviors

of the system efficiently and effectively; such tools can improve task performance and the

experience of the human operator in human-autonomy interaction. Wilderness Search and

Rescue (WiSAR) is one such domain that could benefit from autonomy management tools

when a mini-UAV (Unmanned Aerial Vehicle) is used in search.

Camera-equipped mini-UAVs can be useful tools in WiSAR operations by providing

aerial imagery of a search area with the benefits of quick coverage of large areas, access to

hard-to-reach areas, and lower cost than manned aircraft [41, 83]. In fact Canadian mounties

claim that they have successfully saved a person with a police drone in a recent rescue

mission2. UAV path planning is an important task because a good flight path can increase

2http://www.theverge.com/2013/5/10/4318770/canada-draganflyer-drone-claims-first-life-saved-search-
rescue
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the probability of finding a missing person by making efficient use of the limited flying

time. Various algorithms have been developed to support UAV path planning autonomy

(e.g., [9, 69, 72]), but the question remains how best to incorporate searcher expertise in such

a way that the UAV path planning is as efficient and effective as possible. The key constraint

that we impose on this question is that we want to do this without requiring the searcher to

understand how the autonomy works “behind the scene.”

We propose a new autonomy management approach where the user can influence the

behavior of an autonomous system along three new dimensions: 1) Information Repre-

sentation: information used by the robot is presented to the human in a human-readable

form, and the human directly modifies this information to effect change in robot behavior;

2) Spatial Constraints: a human can add constraints or priorities to different spatial

regions, thereby affecting how the robot plans and performs its task; and 3) Temporal

Constraints: A human can impose time limits for a subtask or impose ordering constraints

on a subtask. We refer to this approach as Sliding Autonomy because, properly designed,

it can allocate degrees of authority and flexibility to the robot’s algorithms by adding or

removing constraints, or by shaping input information. Indeed, we will explicitly use a slider

as one GUI tool for managing UAV path planning.

As the human modifies information, adds priorities, or changes constraints, the sliding

autonomy tool shows immediately how those changes influence the UAV’s plan. This instant

feedback provides the searcher the ability to perform “what-if” analysis and see the causal

effect between his/her action and changes in autonomous behavior. This allows an interactive

approach where autonomous algorithms perform tasks that they are good at and humans do

tasks that they are good at, but in a collaborative and interactive way that avoids the pitfalls

of simple task allocation [15, 105]. Properly done, the human-robot team should perform

better than a human or robot working alone.

Many approaches to autonomy management already exist and are called many differ-

ent things, such as supervisory control [105], mixed-initiative [47], collaborative control [34],
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adjustable autonomy [26, 27] (also referred to as sliding autonomy [25] or adaptive automa-

tion [57, 97]). The approach we propose falls under the category of adjustable autonomy.

The three dimensions we identified are in addition to dimensions of adjustable autonomy

identified by Bradshaw et al. so we design tools and algorithms that operate in a particular

place in Bradshaw’s taxonomy [14].

In our previous work [71] we identified key elements of autonomy integration challenges

along two dimensions: attributes of an intelligent system (capability, information management,

performance evaluation) and organizational scale (individual versus group), which can serve

as guidelines in designing autonomous components and autonomy management tools. In this

paper we extend the guidelines to include attributes needed when a human and autonomy

work collaboratively and analyze how our proposed sliding autonomy approach fits in the

guidelines. By applying sliding autonomy to the UAV path planning task, we argue that this

approach:

• enables the domain expert user to incorporate information only available to or under-

standable by the expert;

• is easy to understand without knowing how autonomy works behind the scene;

• lets the human do what the human is good at (planning strategically and balancing

performance tradeoffs) and autonomy do what autonomy is good at (planning tactically),

resulting in better performance than human or autonomy working alone;

• enables the user to align the task goal (find the path that maximizes probability collected

along the path) with the system goal (finding the missing person quickly) when the

user has more information or more up-to-date information than autonomy; and

• improves human’s experience during the human-autonomy interaction.

To evaluate the usefulness of the proposed approach, we performed a user study

and compared the sliding autonomy method against two other planning methods (manual

and simple pattern path planning) in two WiSAR scenarios (a synthetic scenario and a
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real scenario). We measured each user’s performance with each method and also the user’s

performance on a secondary task (answer questions in a group chat window). Experiment

results show that the sliding autonomy method performed significantly better than the manual

or simple pattern planning methods with no increased mental workload. The human-autonomy

team also performed better than the human or autonomy working alone.

In Section 6.2 we explain how the proposed approach fits into the extended autonomy

design guidelines and describe how a user can manage autonomy along each of the three

new dimensions in the context of UAV path planning. Section 6.3 covers related work in

literature. Section 6.4 lists our hypotheses followed by user study design in Section 6.5. Then

we present experiment results in Section 6.6 and discuss our observations in Section 6.7. In

Section 6.8 we conclude the paper and list possible future work.

6.2 Autonomy Design Guidelines and New Dimensions

6.2.1 Autonomy Design Guidelines

In our previous work [71] we organized the challenges of autonomy and management

tool design along two dimensions: attributes of an intelligent system (capability, information

management, performance evaluation) and organizational scale (individual versus group),

which can serve as guidelines in designing autonomous components and autonomy management

tools. In our definition we treat a system of human(s) and algorithms working together as an

intelligent system. In this paper we extend this table by adding a row in the middle describing

what attributes are needed when multiple agents work collaboratively (see Figure 6.1). A

human-autonomy team working on the same task falls within this category.

As an individual tool, each autonomous component needs to be able to perform a

task (Autonomy); the operator can match the component’s capability to a specific task

according to the information available to the operator, which requires that autonomy can be
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Figure 6.1: Autonomy integration challenges defined along two dimensions. Horizontal
dimension: attributes of intelligence. Vertical dimension: organizational scale.

interrupted, paused, aborted, and resumed (Flexibility); the performance is evaluated by

how well the component accomplishes the task goal in the absence of human input.

When a human-autonomy team works on the same task collaboratively, the autonomous

component needs to provide interfaces so the human can interactively influence the autonomous

behavior (Interactivity); the human should be able to manage how autonomy works

in order to jointly find a solution by utilizing information only available to the human

and/or feed information to autonomy in a representation that the autonomy can understand

(Manageability); and when performance is evaluated, the human operator can judge whether

the individual goal aligns with the collective goal of the system.

As part of a larger distributed system, each component and collaborative subsystem

needs to be modular (Modularity), so they can be mixed and matched to support different

user roles; information from various sources need to be combined and presented to one or

multiple users (Fusion); and performance of the complete human-machine system needs to

be evaluated as a whole.

This paper focuses on the middle row of the guidelines: intelligence of collaborative

agents (human-autonomy team). The three dimensions we propose are ways path planning

autonomy can be managed, and our path planner interface is designed to accept human

input along the three dimensions to provide interactivity. The human can also incorporate
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information from various sources and influence the behavior of path planning autonomy by

allocating degrees of authority and flexibility, making sure the task goal aligns with the

ultimate goal of finding the missing person quickly.

6.2.2 Information Representation Dimension

The right information representation is task specific. Many path planning algorithms

use a probability distribution map that encodes the likely location of a target; for WiSAR,

instead of a target we are interested in the probable location of the missing person, so the

path planning algorithm should be able to account for this distribution. Adopting a Bayesian

perspective, this distribution represents the prior probability of the location of the missing

person.

Completing the Bayesian approach requires a likelihood that encodes the probability of

seeing the missing person given that the person is located in a particular location. We represent

the likelihood using what we call a task-difficulty map, which is a spatial representation

showing (one minus) the sensor detection probability in different parts of the search region.

For example, the prior probability of the missing person being near the last known position

(LKP) is normally high (high prior probability); and the probability of detecting the missing

person in a dense vegetation area using an airborne camera is normally low (high task

difficulty). The objective of path planning is to find a path that maximize the cumulative

posterior detection probability of the missing person given a fixed flying time.

Since WiSAR experts use maps and probabilities in much of their work, we argue that

presenting information about prior probabilities and likelihoods in a map form to the human

allows the human to influence path planning autonomy by “shaping” these two maps. Prior

work has demonstrated that these two maps can be systematically generated based on terrain

features and vegetation data [70, 72]. However, the searcher likely wants to include his/her

domain expertise (past experience, knowledge of the search region, etc.) and additional

information (maybe new evidence found during the search) in the planning. These types of
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Figure 6.2: A screen capture of the sliding autonomy tool showing a 20-minute path segment.
The 3D surface shows the probability distribution map. The UAV icon in the middle indicates
the start point of the path segment and the sphere on the right indicates the end point.

information are not directly understandable by autonomous algorithms, but the searcher can

incorporate them into the probability distribution map and the task-difficulty map using

map editing tools3 and thereby influence the behavior of path planning autonomy.

Marking an area with high probability, the searcher indirectly tells the UAV to treat

the area with high priority; marking an area with high task-difficulty, the UAV might make

multiple passes over the area to search more thoroughly. The 3D surface in Figure 6.2 shows

an example probability distribution map where hills (red) indicate high probability and the

flat area (blue) indicates low probability.

We hypothesize that by allowing a human to directly manage this type of information,

the human can quickly figure out how his or her actions will affect the behavior of autonomy,

even though he/she has no idea about how autonomy works behind the scene. We have

designed a user interface that allows a human to do this and have conducted subjective

3Such as these tools at http://tech.lannyland.com/demos.html.
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evaluations of the interface, but statistical validation of this hypothesis using a careful user

study is left to future work.

6.2.3 Spatial Constraints Dimension

The searcher should also be able to influence the behavior of path planning autonomy

by setting/changing spatial constraints. Spatial constraints can be in the forms of start/end

points of the path segment or task-specific zones.

Setting an end point in an area is a way for the searcher to indirectly tell path planning

autonomy that the area should have higher priority than other areas. For example, if a piece

of clothing is found by the ground team, the searcher can force the path planning autonomy

to go visit that area by setting an end point there. Because the UAV must allocate part of

the fix-length flight time to reach this specified area, some areas that had good payoffs before

this constraint is set can become relatively costly and, therefore, no longer attractive to path

planning autonomy. Importantly, since we have assumed a fixed flight duration, setting an

endpoint not only directly causes the UAV to focus search effort around that location but

also indirectly causes the UAV to avoid other areas because the budget does not allow them

to be searched well. In Figure 2.1, the UAV icon in the middle indicates the start point of

the path segment and the sphere on the right side indicates the desired end point.

In the GUI, the end point can be dragged around the search region and path planning

autonomy suggests different paths accordingly. This capability enables the user to adjust

how much freedom is granted to autonomy. When the end point is close to the start point,

autonomy has greater authority and flexibility in creating paths. If the end point is far from

the start point, authority and flexibility for autonomy is reduced because a major part of

path planning is simply moving the UAV toward the end point with the shortest path.

A task-specific zone can be a no-fly zone, a coverage zone, or a sampling zone. A no-fly

zone is a pretty straight-forward way to restrict the UAV from visiting certain areas [21, 56].

The decision might be for safety reasons or part of the searcher’s strategic planning depending
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on resource allocation. A coverage zone requires the UAV to fully cover the area [69]; a

sampling zone only asks the UAV to collect a few sensor samples from the zone, so the visit

can be very brief [21]. A task-specific zone can be dragged around and the searcher can also

change the shape and/or size of the zone to influence the path generated by autonomy.

The interactive ability to move the end point around (or changing the shape of the

no-fly zone) and see immediately how the change would affect the UAV path recommended

by path planning autonomy gives the user the power to perform “what-if” analysis. It also

allows the user to see the causal effect between his/her action and changes in autonomous

behavior.

Spatial constraints are easy to understand, so the searcher knows how these constraints

will affect the behavior of path planning autonomy. By managing autonomy along this

dimension, the searcher has another way to incorporate additional information to the path

planning task, improve task performance, and align the task goal with the overall goal of

finding the missing person quickly.

In our user study we fixed the start point of the path to the center of the map because

that was the last know position of the missing person. The searcher can set the end point for

the current path segment anywhere on the map, and this end point automatically becomes

the start point for the next path segment. We disabled the ability to move an end point

once a path segment is planned to reduce computation, but we let users reset an entire plan,

effectually allowing them to try different combinations of starting and ending path segments.

Task-specific, sampling, and explicit no-fly zones were evaluated in a separate user study [21].

6.2.4 Temporal Constraints Dimension

In the UAV path planning problem, temporal constraints include a time limit for a

subtask (path segment), subtask ordering, and valid time window.

With the time limit constraint, the searcher can decide how much flight time to

allocate to a path segment out of the total flight time. This enables the searcher to break the

141



www.manaraa.com

path planning task into multiple subtasks and then plan each path segment separately. In

our interface design we let the searcher control time allocation to autonomy using a slider,

and as the searcher moves the slider, the path planning autonomy shows how the suggested

path segment changes respectively. Similar to the spatial constraints, this instant feedback

enables “what-if” analysis and provides instant feedback on the causal effect between searcher

action and changes in autonomous behavior.

For example, for a 60-minute total flight with an end point set to the probability

hill on the right (Figure 6.2), the searcher can move the slider to set time limits and see

immediately what path segment the autonomy would suggest. The path segment shown is

when 20 minutes are allocated out of a total flight time of 60 minutes. If the searcher is

happy with the suggestion, he or she approves the path segment. The UAV moves to the end

point in the path planner and “vacuums up” the probability along the path (how much can

be vacuumed up is determined by the task-difficulty map). Then the searcher works with the

autonomy to plan the path for the remaining 40 minutes. The two (or more) path segments

are joined to form the final path.

A subtask ordering constraint adds temporal dependency to the subtasks (e.g., the

sampling task must be flown before the coverage task). This type of constraint lets the

searcher directly specify priorities in different search areas.

A valid time window constraint specifies a time interval during which a subtask must

be completed. This is less restrictive than giving a time limit constraint because the specified

task can be accomplished at anytime during the window, and more restrictive than an ordering

constraint because the task must be accomplished before a deadline and after a start time.

By managing autonomy along the temporal constraint dimension, the searcher can

break the path planning task into subtasks and incorporate additional information into

the path planning task. The user study described in this paper includes the time limit

constraint. Subtask ordering and valid time window constraints are evaluated in a separate

user study [21]).
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In the example shown in Figure 6.2, the combination of the information representation,

end point constraint (spatial), and time limit constraint (temporal) allows the searcher to

cover the middle area pretty well and then move to the search area on the right to search

there. If no end point constraint is set, autonomy might decide to search the probability hill

on the left with a low time limit or the hill at the bottom with a high time limit. If more

flight time is allocated with the set end point, the autonomy might start searching the area

on the right. Less time allocation reduces the authority and flexibility of autonomy, and

forces autonomy to focus more on the local area; more time allocation increase authority

and flexibility, so autonomy has more freedom on deciding what areas to cover. Instant

feedback on path changes when the search moves the endpoint or varies the time limit lets the

searcher interactively review multiple options and select the path segment that fits best with

his/her strategic planning. This design enables human to plan more strategically (prioritizing

areas in the entire search region) while autonomy works more tactically (covering the current

search area well), using strengths of each when they work collaboratively. Ideally such a

human-autonomy team should work better than either human or autonomy working alone.

6.3 Related Work

Many approaches on how human-autonomy team can work together have been proposed

in the literature. Drucker defines automation as a “concept of the organization of work [28].”

Goodrich and Schultz define the HRI problem as “understanding and shaping the interactions

between one or more humans and one or more robots” [39]. They also specified robot-assisted

search and rescue as a key area for HRI research. In their 1978 seminal paper, Sheridan and

Verplank propose the idea of a level of autonomy spectrum, with full teleoperation at one

end and full autonomy at the other [106]. In the middle, the robot could suggest actions

to humans or make decisions before informing humans. Parasuraman et al. extended this

one-dimensional spectrum to four different broad functions: information acquisition, analysis,

decision selection, and action implementation [90]. Sheridan proposes supervisory control,
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in which a human divides the task into a sequence of subtasks that the robot is capable of

performing, and the human then provides guidance when the autonomous system cannot solve

a problem on its own [105]. In contrast to the top-down philosophy of supervisory control, a

mixed-initiative approach advocates the idea of dynamically shifting tasks when necessary [47].

Collaborative control, which can be thought of as an instance of mixed-initiative interaction,

is a robot-centric model; instead of the human always being in-charge, the robot is treated

as a peer and can make requests to humans through dialogs [34]. Adjustable autonomy [26]

(also referred to as sliding autonomy [25] or adaptive automation [97]) is another type of

mixed-initiative interaction, one that enables the human-automation team to dynamically

and adaptively allocate functions and tasks among team members.

Many implementations of different flavors of adjustable autonomy exist. Dorais et al.

discuss a framework for human-centered autonomous systems for a manned Mars mission [27].

The system enables users to interact with these systems at an appropriate level of control but

minimize the necessity for such interaction. Bradshaw et al. discuss principles and pitfalls

of adjustable autonomy and human-centered teamwork, and then present study results on

so-called “work practice modeling” and human-agent collaboration in space applications [13].

Kaber et al. describe an experiment simulating an air traffic control task where manual

control was compared to Adaptive Automation (AA) [58]. Results suggest that humans

perform better with AA applied to sensory and psychomotor information-processing functions

than with AA applied to cognitive functions; these results also suggest that AA is superior to

completely manual control. Brookshire et al. present preliminary results for applying sliding

autonomy to a team of robots performing coordinated assembling work to help the system

recover from unexpected errors and to thereby increase system efficiency [16]. Dias et al.

identified six key capabilities that are essential for overcoming challenges in enabling sliding

autonomy in peer-to-peer human-robot teams [25]. Bradshaw et al. propose two dimensions

of Adjustable Autonomy (descriptive and prescriptive) to address the two senses of autonomy

(self-sufficiency and self-directedness) and discuss how permissions, obligations, possibilities,
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and capabilities can be adjusted [14]. Bradshaw et al. also summarized some widespread

misconceptions on autonomy and listed seven deadly myths of “autonomous systems” [15].

The human is an integral part of the human-autonomy team. When working with

autonomy, the human often takes on the supervisor role. Bainbridge points out that au-

tomation requires the human operator to take additional management responsibilities [3],

and Sartar identified two automation management policies: management by consent and

management by exception, defining whether the human always retain authority or can the

system take initiative [102]. For complex automation, the human tends to rely on his/her

mental models [86] to manage the system.

Searchers working together with a UAV is an example of a human-autonomy team.

UAV technology has emerged as a promising tool in supporting WiSAR [9, 83]. The goal of

our research is to support fielded missions in the spirit of Murphy’s work [17]. Many path

planning algorithms in the literature address obstacle avoidance while planning a path to

reach a destination using A* [92], LRTA* [53], D* [114], Voroni diagrams [5, 8], or probability

roadmaps and rapidly-exploring random tree (RRTs) [91]. Bourgault et al. [10, 11] describe

how to use a Bayesian model to create paths for a single UAV or multiple coordinated UAVs

to maximize the amount of probability accumulated by the UAV sensors. The algorithms we

used in this paper are algorithms designed from our previous work [69, 72] using techniques

such as global warming technique, convolution, Gaussian mixture models, and Evolutionary

Algorithm.

6.4 Hypotheses

We performed a user study to evaluate the usefulness of the sliding autonomy approach.

More specifically we verify the following hypotheses:

H1: The sliding autonomy method performs better than either a manual path planning

method and a semi-autonomous path planning method that uses standard search patterns to

cover an area.
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H2: The sliding autonomy method performs better than autonomy working alone.

H3: The sliding autonomy method does not increase the mental workload of the

operator when compared against the manual and pattern methods.

6.5 User Study Design

We performed a 2×3 within-subject design with 2 scenarios (easy vs. difficult) and 3

planning methods (manual, pattern, and sliding autonomy). All participants completed all 6

exercises. The order of the scenarios and planning methods was counterbalanced to reduce

learning effect. We recruited a total of 26 college students (14 males and 12 females) between

the age of 19 and 30 (average 22.89).

After the demographic survey, each participant completed four 5-minute long non-

skippable training sessions (one for each planning method with no task-difficulty map, and

one for the manual method with a task-difficulty map) and then completed the 6 exercises.

Each participant had up to 5 minutes for each exercise. Once the participant was happy

with the path generated, he/she could finish the exercise early. We chose this design because

we do not want the user to put all effort into completing the secondary task once he/she

considers the primary task completed, which would skew the measurements on secondary task

performance. At the end of each exercise, the participant completed a partial NASA TLX

survey. Then at the very end of the user study, the participant filled out a survey describing

his/her subjective preference with the three planning methods.

6.5.1 Simulation Environment

The user study was conducted in a 3D simulation environment (see Figure 6.3) where

both the probability distribution map and the task-difficulty map were displayed as 3D

surfaces with a color map (red means high and blue means low). The user could switch

between the two maps at any time and rotate/pan/zoom a map at will. The UAV was a

hexacopter capable of flying in all directions or hovering in the same spot. The UAV start
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Figure 6.3: Top: User study simulation interface with the sliding autonomy method showing
the probability distribution map for scenario 1. Middle left: Probability distribution map for
scenario 2. Middle Right: Task-difficulty map for scenario 2. Bottom: The three patterns
available to user with the pattern planning method, spiral, lawnmower, and line.
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point is set at the center of the search region because that was the last point known (LPK)

for the missing person.

With the manual planning method, the user flew the UAV with the arrow keys in a

sped up fashion (i.e., enabling the user to cover ground faster than the UAV could cover it

in real flight). The user could switch between two flying modes (turn and strafe) and four

camera views (global, behind, bird’s eye, and free form). The user could also pause/resume

the flight for the secondary task or better planning.

With the pattern planning method, the user chose from spiral, lawnmower, and line

patterns (see Figure 6.3 bottom) and joined these patterns to form the final path. The end

point of the previous path segment (LPK if at the very beginning) automatically became the

start point of the current selected pattern. As the user moved the cursor around, the size

of the pattern changed with the cursor position marking the end point of the pattern (The

start/end points pair determined the radius of the spiral pattern, the diagonal of the rectangle

for the lawnmower pattern, and the start/end points for the line pattern). Once the user was

happy with the location, shape, and size of the pattern, he/she could approve the pattern

with a left click. The user could also undo the last path segment (pattern) planned. This

planning method was “semi-autonomous” because the patterns were generated automatically

without manually setting waypoints.

With the sliding autonomy method (see Figure 6.3 top), the user could set an end

point (optional), and then drag the left slider to change the amount of time allocated to

autonomy. The path suggested by the autonomy changed as the slider moved. The slider’s

max value always reflected the remaining flight time (in minute). If the user were happy with

the current path segment, he/she could approve it, the UAV then moved to the end of the

path segment, and the process repeated until a path has been planned that accounts for all

of the available flight duration. The path planning algorithm used was the LHC-GW-CONV

algorithm [69, 72], because it is the fastest algorithm out of all the algorithms we designed
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and produces satisfactory sub-optimal performance when compared to other state-of-the-art

algorithms for the problem.

With all three planning methods, the user could choose to start over at any time

during the exercise, and could restart as many times as exercise time allowed. We recorded

the best path out of all tries.

6.5.2 Scenarios

The user study contained two WiSAR scenarios, a synthetic case (see Figure 6.3 top)

with no task-difficulty map (assuming uniform detection probability), and a real WiSAR

scenario (see Figure 6.3 middle) with a task-difficulty map, in which an elderly couple was

reported missing near the Grayson Highlands State Park in Virginia [60]4.

Scenario 2 is clearly more complex than scenario 1 because the user also had to

consider the different detection probability defined by the task-difficulty map. We refer to

scenario 2 as the high information scenario and scenario 1 as the low information scenario.

These two scenarios exhibited significantly different amounts of workload in a pilot study

and gave us confidence that the results scale to different types of scenarios.

6.5.3 Secondary Task

In each exercise, each participant also performed a secondary task. This provided a

second measure of mental workload. In a group chat window (see Figure 6.3 top) when the

user’s code name appeared, the user had to type answers to simple questions. Roughly every

3 seconds a message was sent to the chat window, and every 5th message asked the user a

simple question (4 per minute). For the same scenario and the same planning method, all

users received the same set of chat messages.

4The probability distribution map used for this scenario (Figure 6.3 middle left) was generated using a
Bayesian model [70]. The map has been evaluated at George Mason University’s MapScore web portal [18] and
performed better than most other models evaluated, scoring 0.8184 on a [-1,1] scale where the higher the score
the better. http://sarbayes.org/projects/. The task-difficulty map (Figure 6.3 middle right) was generated
using vegetation density data downloaded from the USGS web site and categorized into three difficulty levels
(sparse, medium, and dense, with detection probability of 100%, 66.67%, and 33.33% respectively).
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We chose to use a group chat window as the secondary task because this is typical in

WiSAR operations. We also designed the chat messages to simulate a real WiSAR search

and improve ecological validity. The user was asked to acknowledge connection and report

path planning status periodically.

6.5.4 Measures

We used the following five measurements for the primary path planning task:

• Percent score: In each exercise, an exercise score was computed by summing the

amount of probability collected by the UAV if it followed the path planned. The user’s

best score for each exercise (out of multiple tries) was normalized by dividing the best

score from all users for the same scenario to compute the percent score. This way we

could compare planning methods across scenarios.

• Time spent: How much time was spent with each exercise.

• Try count: How many times the user tried in each exercise. Note that because the

manual planning method takes much longer to plan a path than the other two methods

by design, this measurement is used mainly to compare between the pattern and sliding

autonomy planning methods.

• Mouse clicks per try: How many times the user left-clicked the mouse within a try.

Again, this measurement is used to compare pattern and sliding autonomy planning

methods because the manual planning method does not require a lot of mouse clicks by

design.

• NASA-TLX raw score: The sum of user subjective evaluation of cognitive workload

in six dimensions normalized to a 100-point scale.

The following two measurements were used for the secondary task:

• Percent of questions missed: What percentage of questions directed to the user

were missed before the user completed the exercise. Here we did not measure the
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percent of questions answered correctly because all the questions are very simple and

all users answered the questions correctly.

• Chat latency: The number of seconds between the time a question was presented to

the user and the time when the user answered the question.

6.6 Results and Analysis

We analyzed the user study data with a mixed measures analysis of variance (ANOVA)

and report results in this section.

6.6.1 Comparing Across Scenarios

Mouse clicks per try for the two scenarios are significantly different (F [1, 25] =

28.65, p < .0001) indicating scenario 2 required participants to be more active than in scenario

1. This result supports observations in the pilot study that scenario 2 imposed higher workload

on participants than scenario 1. Evaluating logs of user activity indicates that participants

created more path segments (for pattern and sliding autonomy planning methods) in scenario

2 than scenario 1.

NASA TLX scores are also significantly different (F [1, 25] = 31.35, p < .0001) between

the two scenarios. The average score difference is 9.98 (out of a total of 100 points), almost

a full “pip” on the TLX survey, indicating that on average each participant felt his/her

cognitive workload was much higher in the high information scenario.

The percent of questions missed is almost identical between scenarios (54.88% and

54.90%), and the chat latency is also very close (10.39 and 11.17 seconds). This shows that

participants on average performed about the same with the secondary task across scenarios.

No statistically significant differences were found across scenarios for percent score, time

spent, and try count.
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Table 6.1: Comparing across planning methods (SE stands for standard error)

M P SA SE Significance
% Score 59.40 72.75 94.60 1.39 F [2, 50] = 223.03, p < .0001
Time spent 243.35 240.02 228.37 12.06 F [2, 50] = 1.16, p = .32
Try count 1.75 3.56 3.31 0.43 F [2, 50] = 9.47, p = .0003
Clicks/try 13.01 35.64 25.58 2.90 F [2, 50] = 19.47, p < .0001
NASA TLX 61.51 49.18 48.86 2.81 F [2, 50] = 14.15, p < .0001
% Q. missed 52.94 56.69 55.04 5.17 F [2, 50] = 1.26, p = .29
Chat latency 10.39 11.17 10.92 0.65 F [2, 50] = 0.46, p = .63

6.6.2 Comparing Across Planning Methods

For each scenario, three path planning methods were used (manual, pattern, and

sliding autonomy). Table 6.1 lists comparison among these three methods.

Percent score differences are statistically significant (F [2, 50] = 223.03, p < .0001) with

sliding autonomy (94.60%) performing better than pattern (72.75%) and manual (59.40%).

As shown in Figure 6.4, this trend is also clear in both scenario 1 and 2 individually. Therefore,

user study results support our first hypothesis: sliding autonomy method performs better

than either the manual method or the pattern method. This holds for both high and low

information scenarios, suggesting some robustness of the result across a range of scenarios.

Statistically significant differences (F [2, 50] = 19.47, p < .0001) were also found in

mouse clicks per try (starting over means having another try). The manual method uses

arrow keys to fly the UAV around and only uses mouse clicks when switching camera modes

or stop the timer in order to perform the secondary task. By design, this method does not use

a lot of mouse clicks. Pattern and sliding autonomy methods both use mouse clicks for the

actual path planning task, and the pattern method clearly generated more mouse clicks per

try (35.64) than the sliding autonomy method (25.58). Two factors might have contributed

to this difference: First, the pattern method allowed a participant to ”undo” a path segment

(in additional to reset and start over) whereas sliding autonomy did not allow this. Second,

sliding autonomy allowed a participant to drag a slider, which produced different suggested
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Figure 6.4: Performance differences for the three path planning methods.

paths; this accomplishes the same type of “what if” interaction as “undo” in the pattern

method, but required many fewer mouse clicks.

It is informative to compare these interactive planning methods with a fully au-

tonomous path. This is useful because, due to the computational complexity of the planning

problem, only suboptimal solutions can be generated by the planning algorithms. Completely

autonomous path planning (without human input) produces paths with a score of 96.13%

for scenario 1 and 78.33% for scenario 2. It is instructive to compare these values to those

produced by the different planning methods in the different scenarios (see Figure 6.4). This

places the performance of full autonomy ahead of manual and pattern planning methods

in both scenarios, but behind sliding autonomy in both scenarios. This indicates that the

sliding autonomy approach outperforms both manual, pattern, and full autonomy approaches

to the problem.

As shown in Table 6.2, for scenario 1, no participants were able to outperform full

autonomy using manual or pattern approaches, but 23 of 26 participants (88.46%) were able
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Table 6.2: Percent of participants outperforming autonomy with each method

Manual Pattern Sliding Autonomy
Scenario 1 (Low) 0% 0% 88.46%
Scenario 2 (High) 0% 19.23% 92.31%

to outperform full autonomy using sliding autonomy. For scenario 2, no participants were able

to outperform full autonomy using manual control, but 5 of 26 participants (19.23%) and 24

of 26 participants (92.31%) were able to outperform full autonomy using pattern and sliding

autonomy, respectively. Thus, results of the study support the second hypothesis: Sliding

autonomy methods perform better than a fully autonomous approach given state-of-the-art

planning algorithms for this problem.

The full autonomy we refer to here is the specific path planning algorithm we used in

the user study (LHC-GW-CONV). In Section 6.7.2, we discuss how the sliding autonomy

approach compares to other path planning algorithms.

NASA TLX raw scores show significant differences (F [2, 50] = 14.15, p < .0001) among

the three methods, with the manual method showing the highest cognitive mental workload

(61.51), a full “pip” more than the other two methods on the TLX survey. The average score

difference between the pattern method and the sliding autonomy method is not significantly

different. Figure 6.5 shows the box plots of the NASA TLX scores for each scenario.

For all three planning methods, participants performed about the same on the sec-

ondary task, as shown by percent of questions missed and chat latency in Table 6.1. Combining

this with percent score and NASA TLX we can conclude that sliding autonomy performed

best without increasing participants’ mental workload, which support our third hypothesis:

Sliding autonomy method does not increase the mental workload of the operator when

compared against manual and pattern methods.
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Figure 6.5: Box plots of the NASA TLX scores for each scenario.

6.6.3 Additional Factors

We also performed ANOVA analysis on some additional factors that might create

differences: gender, experience in video games, order of the scenarios, and whether participants

used full autonomy with the sliding autonomy method. No significant differences were found

for these factors overall, across scenarios, or across methods. There is also no significant

correlation (-0.23) between percent of questions missed in the secondary task and the NASA

TLX raw scores.

6.7 Discussion

6.7.1 Planning Methods Characteristics

Manual Method
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With the manual method, the user uses arrow keys to move the UAV around to

create a path, so by design the method is very intuitive, flexible, and requires more physical

interactions (keyboard, not mouse clicks). But in order to plan a 60-minute path faster

than real-time (participants had to accomplish this in 2 minutes), although we designed the

experiment using input from a pilot study, ensuring that each participant could complete

at least two attempts during the 5 minutes allocated, many participants reported that the

arrow keys were too “sensitive” and recommended slowing down the UAV.

Because of the time pressure, when errors are made, in practice it is too costly to start

over (we did not provide an undo function). Although it is possible to pause the simulation to

allow for participants to plan, participants reported that they did not feel that they had the

the luxury to do so. Naturally, when this continuous process is interrupted by the secondary

task where the user has to pause planning and answer questions in the group chat window,

user frustration is high.

More physical work, higher frustration, and lower performance score are the main

factors contributing to a much higher NASA TLX score for the manual method. During

training, participants actually had one extra session with the manual method, but this method

still performed the worst.

Pattern Method

With the pattern method, the user joins a mixture of three patterns (spiral, lawnmower,

and line) together to form the final path. This is more of an episodic process, so it is very

easy to pause in the middle of the planning and shift attention to the secondary task. There

is also less time pressure because the user can quickly plan for the remaining time with just

one big spiral (or lawnmower) in one click. Therefore, the user has plenty of time for many

tries with different strategies.

In the post user study survey, many participants commented that with the spiral and

lawnmower pattern it is really easy to run out of time. They suggested adding the ability to
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allocate time to the patterns similar to the sliding autonomy method. This means that with

this method, a user enjoys the systematic coverage of an area but has a hard time estimating

how much time it takes the UAV to cover the area following the pattern. Several participants

also suggested adding more patterns to the method.

The pattern method is the only method that allows a participant to “undo” a plan.

This ability impacted the number of mouse clicks per try and participants’ preference over the

three planning methods. Another interesting observation is that participants seemed to be

overly optimistic about their performance using the pattern method. For example, although

sliding autonomy created better paths than pattern in all scenarios for all participants, 46.15%

of participants (as measured in the NASA TLX with the performance dimension) and 26.92%

(as reported in the post study survey) reported that the pattern method created best paths.

Sliding Autonomy Method

Similar to the pattern method, the sliding autonomy method is also episodic. Therefore,

stopping in the middle of the planning to answer questions for the secondary task was easy.

Since it only takes a few clicks to let autonomy plan path for the remaining time, there is not

much time pressure and the user can have many tries.

Because the user does not know how autonomy works behind the scene, many partici-

pants were surprised by the path recommended by autonomy, and feel that autonomy did

not do what they wanted it to do. For example, when a user sets the end point in region A,

autonomy might plan a path that spends most of time in a seemingly unrelated region B and

only goes toward region A at the end of the path, because such a path is more efficient (scores

higher). In such cases, the slider becomes the only tool that lets the user “force” autonomy

to do what the user wants, and path planning turns into a fight between the human and

autonomy. However, the instant feedback (displaying path and the predicted “vacuuming

effect”) does help the user figure out why autonomy would suggest something different, and

some participants were glad that autonomy suggested better paths they had not considered.
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Most participants were generally happy with the path segment recommended by

autonomy covering a local region, even when the region is in an irregular shape (not a circle or

rectangle). Many participants also expressed that they did not have enough control over the

path generation and recommended adding the ability to include constraints such as “middle

points” where the path segment has to go through these middle points. In fact, such “middle

points” can already be achieved with the current method by setting multiple endpoints,

effectually creating a multi-segment approach. Several participants complained that this

method does not have the undo function. With both the pattern and sliding autonomy

methods, many participants expressed the desire to be able to modify the path after it is

generated.

User Preferences

In scenario 2 where a task-difficulty map was used, most participants switched between

map views. The probability map used is similar to a unimodal distribution (see Figure 6.3

middle left). For the first part of the planning, they viewed the probability distribution map

and “covered” the high mode. They then switched the view to the task-difficulty map for the

remaining time, only occasionally switching back to the probability distribution map view.

This pattern of behavior was seen in each of the three planning methods. Some participants

suggested showing both maps side by side or have a way to combine the two maps into one.

These ideas are worth exploring in future user studies.

In the post user study survey, the majority of the participants think manual is the

easiest to learn (53.85%), pattern is the easiest to use (57.69%), and sliding autonomy

performed the best (65.38%). However, most participants preferred the pattern method

(69.23%) out of all three. We believe the inability to undo and operator-induced oscillation

when moving the slider had negative impacts on participants’ preference over the sliding

autonomy method. This is relevant for the design of future sliding autonomy systems,

suggesting that some combination of pattern-based planning and sliding autonomy, augmented
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Figure 6.6: Comparing sliding autonomy performance against various markers.

with the ability to undo decisions and flexibly alter or constrain paths, will produce a high-

performing GUI with high user acceptance.

6.7.2 Reliance on Autonomy

We have claimed that a human interacting with an autonomous algorithm via sliding

autonomy outperforms full autonomy, but this claim naturally depends on the quality of the

autonomous algorithm. The algorithm we used was selected from a comparison of various

algorithms in our prior work [69, 72] because it worked in real-time and produced high quality

paths, but there exist other algorithms that produce higher quality paths if we allow more

time for path-planning. It is useful to compare performance of the sliding autonomy algorithm

with these other algorithms.

As a basis for comparison, we consider an evolutionary algorithm (EA) that takes the

output of several real-time planning algorithms, including the one we used in the user study,

as seeds for the evolutionary process. Thus, the EA approach takes high quality solutions and
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Table 6.3: Percent of participants outperforming autonomy performance markers

Autonomy EA Autonomy+1
Scenario 1 (Low) 88.46% 88.46% 7.69%
Scenario 2 (High) 92.31% 26.92% 15.38%

then adds further optimizations. As shown in Figure 6.6, when such optimization is applied

to scenario 1 and scenario 2, the optimization produces a path that is only slight worse than

sliding autonomy for scenario 1 and a path that is much better than sliding autonomy in

scenario 2. This suggests that better path planning might be more important than interactive

path planning.

Because we are arguing that human plus autonomy is better than either alone, we

explored how the number of human input can affect the output of the sliding autonomy

approach. Results indicate that the sliding autonomy algorithm we used in the user study

can generate high quality paths with only one point of human input (specifying an end point).

We call this approach the autonomy+1 approach.

Using the best score out of 3 tries (roughly equal to the average number of tries in

the user study), we computed the percent score for this autonomy+1 human input approach:

99.47% for scenario 1 and 98.58% for scenario 2. Using the EA and Autonomy+1 scores as

additional markers, we plotted participants average performance in each scenario against

these markers. Figure 6.6 shows the result.

First, sliding autonomy (human-autonomy team) outperformed nominal autonomy in

both scenarios. Sliding autonomy also outperformed EA in scenario 1 (low information). In

scenario 2, the performance of sliding autonomy is not very far from EA (5.36%), and the

difference is even smaller (1.85%) when averaged over both scenarios. However, the most

interesting observation is that autonomy+1 actually outperformed all others in both scenarios

(99.47% for scenario 1 and 98.58% for scenario 2). Although a few participants did score

higher than autonomy+1, the difference is less than 1.5%. Table 6.3 lists what percentage of

participants outperformed full autonomy, EA, and autonomy+1.
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What Figure 6.6 suggests is that with the sliding autonomy method, it does not need a

lot of human input to perform really well. Instead of spending the effort creating many path

segments and setting many end points, it may be more effective to search in the right region

by setting just a few constraints. However, 88.68% of the participants gave more than 1 input

when they used sliding autonomy (81.13% for 2 inputs and 69.81% for 3 inputs). In the post

user study survey, only 46.15% of the participants acknowledged trying full autonomy with

the sliding autonomy method, meaning that these participants did no specify any endpoints

and simply relied on the autonomous path-planner to do all the planning. When using the

sliding autonomy method, a good strategy is actually to start with full autonomy (as the

worst scenario) and then see how additional human input can improve the path, but this

leads to questions of over- and under-reliance on autonomy [15].

6.7.3 Why Human-Autonomy Team Performs Better?

User study results show that the human-autonomy team outperformed both human or

autonomy working along. But how were they able to achieve this? We hypothesize that this

is because the sliding autonomy approach enabled the human to focus on what the human is

good at and autonomy to focus on what autonomy is good at. Bradshaw et al. point out [15]:

“Humans, though fallible, are functionally rich in reasoning strategies and their powers of

observation, learning, and sensitivity to context.” Our observation suggests that a human

may be better equipped than autonomy to think strategically and to recognize bad path

segments.

The sliding autonomy method lets the user plan at a higher abstract level by specifying

priorities in search sub-regions and how well each sub-region should be covered. Autonomy,

on the other hand can generate a path that covers a sub-region (or some nearby sub-regions)

precisely and quickly, and can handle all kinds of irregular sub-region shapes. Therefore, the

sliding autonomy method combines the strengths of both human and autonomy.
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A human user is also very good at recognizing bad moves in solutions suggested by

autonomy. The sliding autonomy approach enables the human user to select from a bunch of

suggested paths. Selecting a path segment with fewer bad moves will probably increase the

chance of a good final path.

6.7.4 Why Similar Secondary Task Performance in All Three Methods?

The pattern and sliding autonomy methods are episodic, suggesting that it is easier for

the user to pause planning and shift attention to the secondary task of answering questions in

the group chat window. However, user study data show that there is no significant differences

in secondary task performance across all three path planning methods.

The manual method requires a lot of continuous keyboard interaction (great physical

demand and temporal demand) to move the UAV around. However, it does not actually

require much mental demand and effort because the planning process is more sporadic and

spontaneous. If a mistake is made, because there is no way to correct it, the user quickly

stops worrying about it and moves on. The low mental demand and effort make monitoring

the group chat window an easy task, even though switching back and forth between primary

task and secondary task is very frustrating.

With the pattern and sliding autonomy methods, path planning is more like piecing

together a puzzle. The user is deeply drawn into problem solving, constantly comparing

tradeoffs, which actually requires more mental involvement. With the sliding autonomy

method, the user is interacting with complicated algorithms, so while planning a path, the

user is also trying to build a mental model of how autonomy works. As a result, the user

actually paid less attention to the secondary task. Fighting with autonomy when human and

autonomy had disagreements also drew user attention away from the group chat window. But

when the group chat window catches the user’s attention, he/she can perform the secondary

task leisurely.
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David Woods and Eric Hollnagel describe the law of stretched systems [132]: ”every

system is stretched to operate at its capacity; as soon as there is some improvement, for

example in the form of new technology, it will be exploited to achieve a new intensity and

tempo of activity.” With the pattern and sliding autonomy methods, users had more tries

and evaluated more options and tradeoffs. With the sliding autonomy method, users played

more with spatial and temporal constraints, and evaluated more paths suggested by path

planning autonomy, which resulted in better quality paths at the cost of no performance

increase in the secondary task.

6.8 Conclusions and Future Work

In this paper we propose a new autonomy management approach, sliding autonomy,

which lets the user influence the behavior of the autonomous system along three new

dimensions: information representation, spatial constraints, and temporal constraints. We

extend the autonomy design guidelines in our prior work by adding a new row for intelligence

of collaborative agents (human-autonomy team), and explain how the three new dimensions

fit into the guidelines when we apply the proposed approach to the task of UAV (Unmanned

Aerial Vehicle) path planning to support Wilderness Search and Rescue (WiSAR). We

present interface designs that let the user allocate degrees of authority and flexibility to the

robot’s algorithms through interactivities along these new dimensions. Experiment results

from a user study support our hypotheses and show that the sliding autonomy method

performs significantly better than either the manual or pattern path planning method without

increasing the user’s mental workload, the human has a better interaction experience, and

human-autonomy team outperforms either human or autonomy working alone.

Over- and under-reliance on autonomy are related to issues of trust. Both Lee and

See [66] and Bradshaw et al. [15] suggest that trust in automation should be “calibrated”. We

believe that the sliding autonomy approach we propose can be useful in this aspect, because

as the user is moving the slider, he/she is calibrating his/her reliance on path planning
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autonomy. In our user study, all participants only had 30 minutes of training before using

the sliding autonomy method. We speculate that as the user gets more familiar with the

sliding autonomy approach in the long run, he/she would be able to calibrate reliance better.

Validating this hypothesis is a natural extension of the present work.

When more complex and/or outdated probability distribution maps and task-difficulty

maps are used, or when the user has the ability to modify information representation in

the sliding autonomy interface, it would be interesting to see how these affects the human-

autonomy interaction and the performance of the human-autonomy team. We leave these for

future work.
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Chapter 7

Probability Distribution Map and Task-Difficulty Map Editor

Interface

7.1 Introduction

At the between-episodes scale, a searcher might have additional case-specific in-

formation (e.g, past experience, knowledge of the search area or weather conditions, or the

profile of the missing person) and would like to modify the general plan produced at the

strategic scale. Moreover, as search progresses, the search plan should change due to newly

found evidence (or the lack of it) from either the ground searchers or previous UAV flights.

We developed two autonomy management tools at this scale that allow the user to manage

two types of information: the probability distribution map and the task-difficulty map.

Searchers can use the DistEdit tool to modify a probability distribution map and use

the DiffEdit tool to modify a task-difficulty map generated at the strategic scale. Both

tools enable the user to view maps as 3D surfaces where a color map is applied for better

distinction (red means high probability area or high task-difficulty level and blue means low).

The user can use mouse and finger gestures to rotate/pan/zoom the respective map and edit

the shapes of the maps in 3D to incorporate information that the autonomous components

are unable to interpret. The user also has the option to overlay a satellite image of the search

area on top of the maps for better alignment and precision.

If the user is dissatisfied with the probability distribution map or task-difficulty map

systematically generated at the strategic scale, using the DistEdit and DiffEdit tools he
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Figure 7.1: An example probability distri-
bution map generated using the DistEdit
tool.

Figure 7.2: An example task-difficulty map
generated using the DiffEdit tool with a
satellite image of the search region overlaid
on top.

or she can also create a probability distribution map and/or a task-difficulty map from scratch.

Figure 7.1 and 7.2 show screen captures of these two tools and also example maps generated

using the two tools.

Both tools enable the searchers to incorporate additional information only available

to or understandable by the user into the two information representations – in the form the

autonomous components of the UAV system can understand – and then interactively use

the UAV path-planner to use the additional information produce highly efficient paths. We

designed both tools to support common touch-screen finger gestures. The user has the option

to perform all tasks using only finger gestures, only keyboard/mouse controls, or a hybrid of

the two.

7.2 The DiffEdit Tool

The DiffEdit tool enables the user to create or modify a task-difficulty map by

marking areas with different levels of difficulty. When using a UAV to support WiSAR, task

difficulty is related to sensor detection probability. A difficult area on the map represents

a place where the likelihood of detecting the missing person is low (maybe due to terrain

features, vegetation density, or lighting conditions). By marking an area with high task
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Figure 7.3: An example task-difficulty map systematically generated at the strategic scale
for a real WiSAR scenario with modification made on the lower left corner using the DiffEdit
tool.

difficulty, the user can indirectly tell the UAV to make multiple passes in the area, or avoid

the area and set high priority to areas marked with low task difficulty. When combined

with a prior probability, encoded as a probability distribution map, an area with medium

probability and low task difficulty may be more attractive than an area with high probability

but high task difficulty.

7.2.1 Editing vs. Starting New

The tool is modular for easy integration into the overall intelligent system. A task-

difficulty map is stored as an external file, and can be loaded (imported) into the tool. A

modified map can be saved (exported) to the hard drive. The group of buttons on the upper

right corner of Figure 7.3 are for this purpose.
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The user can click the New Map button to start a map from scratch, if the user is

dissatisfied with the systematically generated map from the strategic scale. The Load Map

button lets the user load an existing map. This map could be from the strategic scale, or

could be from a UAV flight episode in the between-episodes scale, so information collected

from the previous UAV flight could be incorporated into the map.

In Figure 7.3, the right part of the map is systematically generated from vegetation

density information at the strategic scale where the red plateau areas are areas with high

vegetation density. The canyon shapes indicate areas with sparse vegetation density. The

circular hole on the lower left corner of the map shows user-made modifications to the

systematically generated map using the DiffEdit tool. Then the user can click the Save

Map button to store the map as an file externally.

The tool also lets the user overlay satellite imagery of the search area on top of the

task-difficulty map for better reference and precision (Figure 7.4 shows an example). What

image to use can be configured in tool settings. Then the user can click the overlay button

Show Terrain (Hide Terrain) to toggle back and forth.

7.2.2 3D Navigation Controls

The DiffEdit tool is a true 3D environment where the task-difficulty map is shown as

a 3D surface. Task difficulty is represented by both height and color (blue is easy, green is

medium, and red is hard). The ability to rotate the surface in 3D and zoom in/out allows

the user to get a good grip of task difficulty in different areas of the search region.

The user can click the navigation mode toggle button to switch between Rotate mode

and Pan mode. In the Rotate mode, the user can use the arrow keys and the WASD keys

to rotate the map both vertically and horizontally in 3D. In the Pan mode, the arrow keys

and the WASD keys can pan the map left-right and up-down. Finally, the mouse scroll wheel

can be used to zoom the map in or out.
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Figure 7.4: A satellite imagery of the search area loaded into the DiffEdit tool as an overlay,
an example high task-difficulty area on the top left corner made using the paintbrush tool,
and an example selection made using the lasso selection tool.

With a touch-screen device, buttons can be pressed with simple finger touches. A

common two-finger rotate gesture will rotate the map; moving two fingers toward the same

direction will pan the map to that direction; and the two-finger pinch gesture lets the user

zoom the map in or out.

Using the rotate/pan/zoom function, the user has total control of the 3D environment.

With the satellite imagery of the search area overlaid on top, the user can easily mark task

difficulty at the desired resolution and precision.
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7.2.3 Paint Mode vs. Lasso Select Mode

The DiffEdit tool lets the user edit a task-difficulty map using two modes: the paint

mode and the lasso select mode. The user can select which mode to use by clicking the

toggle button Paint (Select). First the user needs to select a desired task difficulty level by

clicking one of the difficulty level buttons. The tool supports three task difficulty levels: easy,

medium, and hard. Each task difficulty level is represented on the 3D task-difficulty map by

color and height. The easy level (color blue and low height) could represent an area with no

vegetation coverage or sparse type vegetation (e.g., grass). The medium level (color green

and medium height) could mean the area is covered by plants such as short shrubs. The

hard level (color red and high height) might be used to mark areas with dense forest (e.g.,

evergreen type plants). Although the tool only supports three task difficulty levels presently,

it can be easily extended to support more difficulty levels through, for example, a slider bar.

In the paint mode, the cursor becomes the brush and is shown as a circular shadow

projected onto the 3D surface from above, with its color matching the selected task-difficulty

level. The user can move the brush size slider in the control panel (see the right side of

Figure 7.4) to select a desired brush size between 1 and 10. The size of the brush is indicated

on the map by the radius of the circular shadow. Then the user can mark task difficulty on

the task-difficulty map by painting different areas using the paintbrush. If a satellite imagery

is overlaid on top of the task-difficulty map, the zoom function described in the previous

section can be combined with different brush size selection to achieve the level of precision

desired by the user. Figure 7.4 shows an example where an area on the satellite imagery with

dense vegetation (upper left part of the map) is marked with high task difficulty (red) using

the paintbrush tool.

In the select mode, the user can drag a freehand selection around the desired area.

The tool will automatically connect the starting point and the end point of the line to form a

closed selection, and the selected area is automatically marked with the selected task difficulty
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Figure 7.5: The area selected in Figure 7.4 is automatically marked with the selected task
difficulty level easy.

level. The white line in Figure 7.4 shows an area selected by a user, and Figure 7.5 shows

how the selected area is automatically marked with the selected easy task difficulty.

Similarly, using a touch-screen device, the user can use a finger to paint on top the

task-difficulty map in the paint mode. The user can also use a finger to draw freehand

selection on the map to select an area in the select mode.
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Figure 7.6: An example probability distribution map systematically generated using the
DistCreate tool at the strategic scale for a real WiSAR scenario.

7.3 The DistEdit Tool

The DistEdit tool enables the user to create or modify a probability distribution

map by adding or subtracting Gaussian distributions. This way the user can generate a

mixture of Gaussians to represent the desired probability distribution, which is common

in real WiSAR operations. When using a UAV to support Wilderness Search and Rescue

(WiSAR), a probability distribution map shows the place where the missing person is likely

to be found. The modified probability distribution can be used later by the path planner

to prioritize tasks and plan UAV paths. By marking an area as a high priority area, the

searchers can indirectly manipulate the UAV to search the area before other areas without

the need to manually specify waypoints.
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7.3.1 Editing vs. Starting New

Similar to the description of the DiffEdit tool used to modify the task-difficulty map,

the DistEdit tool is modular and the probability distribution map is stored as an external file.

The user can load a probability distribution map systematically generated at the strategic

scale using the DistCreate tool and improve it, or start from scratch if the user is dissatisfied

with the automatically generated map. This map can then be updated after each UAV flight

episode as more information is collected in the previous flight. Areas already covered by the

UAV can be marked with lower probability; areas where possible evidence has been found by

the UAV or ground searchers can be marked with high probability.

The group of buttons are identical to the DiffEdit tool (New Map, Load Map, and

Save Map) and the user also can similarly overlay satellite imagery on top of the probability

distribution map. Figure 7.6 shows an example probability distribution systematically

generated by the DistCreate component at the strategic scale. This map was generated

using the HikerPaul WiSAR scenario [72] from the International Search & Rescue Incident

Database (ISRID) [60]. The probability hill on the left side of the map indicates an area

where the probability of finding the missing person is very high. The probability distribution

map is encoded with a color map where red indicates high probability areas and blue indicates

low probability areas. Figure 7.10 shows a probability distribution map with satellite imagery

overlaid on top of the map.

7.3.2 3D Navigation Controls

The 3D navigation controls in the DistEdit tool is identical to the DiffEdit tool

described in the previous section. Arrow keys and the WASD keys are used to rotate the map

vertically and horizontally in the Rotate mode and pan the map left-right and up-down in

the Pan mode, and finger gestures on a touch screen device perform identical functions as

the DistEdit tool. Mouse scroll wheel can be used to zoom the map in or out.
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Figure 7.7: An example probability distribution map demonstrating how a Gaussian can be
added to or subtracted from the map and how probability in an area can be completely
erased.

7.3.3 Paint Mode vs. Lasso Select Mode

The DistEdit tool lets the user edit a probability distribution map using two modes:

the paint mode and the lasso select mode. The user can select which mode to use by clicking

the toggle button Paint (Select).

In the paint mode, the user can choose to add a Gaussian to (or subtract a Gaussian

from) the current probability distribution map or erase the probability in an area. The user

first clicks one of the three color coded buttons, Erase, Increase, and Decrease, then paints

on the map using the paintbrush to make modifications.

If Erase is selected, painting an area on the map means completely erasing the

probability in that area. This can be useful when an area has already been throughly searched

by the UAV and/or ground searchers in the previous episode and the user is confident that

the missing person is not in that area. The user can also move the cursor to paint with

freehand. The brush size can be set using the brush size slider on the control panel. The big
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Figure 7.8: A Gaussian is added to the systematically generated probability distribution map
shown in Figure 7.6.

circular hole in Figure 7.7 shows an example of an erased area created by using a paintbrush

of the same size.

If Increase is selected, The brush size determines the standard deviation (with a

radius equivalent to three times the standard deviation) of a symmetric Gaussian to be added

to the existing probability distribution map. The mouse click (or finger press gesture) position

determines the mean of the Gaussian distribution, and the duration of the click (or finger

press gesture) determines the scale (height relative to other parts of the distribution) of the

Gaussian distribution. The probability hill in Figure 7.7 shows an example of a Gaussian

added to the probability distribution map. Figure 7.8 shows how another probability hill can
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Figure 7.9: Examples of elliptically-symmetric and bivariate Gaussians and asymmetric
bivariate distributions approximated using the DistEdit tool.

be added to the systematically generated probability distribution map from the strategic

scale. The black circle shows the brush size.

If Decrease is selected, the effect is just the reverse of Increase. Instead of adding

a Gaussian to the existing distribution map, a Gaussian is subtracted. The mean, standard

deviation, and the scale of the Gaussian is determined the same way as mentioned above.

The small basin in the middle of Figure 7.7 shows an example of a Gaussian subtracted from

the probability distribution map.

The blue circle on the lower left part of the map in Figure 7.7 shows the paintbrush

cursor projected onto the 3D surface from above, so the user can see directly the brush size

with respect to the entire map. The color of the circle matches the color-coded buttons in
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the control panel, so it is easy to tell which action (erase, increase, and decrease) is currently

selected. The user can move the brush size slider in the control panel (see the right side of

Figure 7.4) to select a desired brush size between 1 and 10. The probability hill in Figure 7.10

is created with brush size 10.

It is worth mentioning that although in the paint mode, only circularly-symmetric

bivariate Gaussians (standard bivariate Normals) can be added to or subtracted from the

probability distribution map, elliptically-symmetric bivariate Gaussians and asymmetric

bivariate distributions can also be approximated using the paintbrush tool. For example, the

user can create three circularly-symmetrical Gaussians where the means of these Gaussians

are on a straight line with equal distance, the two Guassians on the outside have identical

scales, and the Gaussian in the middle have a larger scale. The mixture of these three

Gaussians approximates the shape of an elliptically-symmetrical bivariate Gaussian. The

user can also move the cursor in a straight line but in varying speed while adding a Gaussian

to the map to approximate asymmetric bivariate distributions. Figure 7.9 shows examples of

such approximations.

Similar to the function in the DiffEdit tool, in the select mode the user can drag a

freehand selection around the desired area. The tool will automatically connect the starting

point and the end point of the line to form a closed selection. Probability in the selected

area is automatically erased. The white line in Figure 7.10 shows an area selected by a user.

When satellite imagery of the search area is overlaid on top of the probability distribution

map, the user can zoom in using 3D controls and then trace an area on the satellite imagery

using this method.

With both the paint mode and the select mode, when a touch-screen device is used,

the user can use a finger to paint or select on top the task-difficulty map.
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Figure 7.10: An example probability distribution map with the satellite imagery overlaid on
top where an area is selected in the lasso select mode.

7.3.4 Cross-Platform Support

Both the DiffEdit tool and the DistEdit tool are developed using the free version of

the Unity Game Engine. This means that these tools are cross platform and can support

Windows, Mac, Unix, and can be ported to mobile devices such as iPhone, iPad, Android

tablets, and Android phones. Both tools also have web versions that can run under typical

web browsers such as Chrome, Firefox, IE, and Safari. The platform independence adds value

to these tools and make it more feasible to integrate the tools into real WiSAR operations.
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Chapter 8

Conclusions and Future Work

The research presented in this dissertation develops and evaluates tools that allow

users to manage autonomy by managing information. This autonomy management approach

is applied to the application domain of using a UAV to support Wilderness Search and Rescue.

Autonomous components and autonomy management tools operate at three distinctive

temporal scales, strategic, between-episodes, and within-episode. These scales represent

three different temporal spans that are relevant to many problems: a long-term span that uses

data and models from similar problems generates behavior that exploits common trends; a

medium-term span that uses data and models obtained from prior attempts to solve the specific

task to shape a new attempt to solve the problem; and a short-term span that uses real-time

data and insights obtained from performing the task to shape the behavior of the autonomy

moving forward, respectively. By managing two information representations, a probability

distribution map and a task-difficulty map, at each temporal scale, the domain expert user

becomes an “intelligent sensor”, “digesting” information from various sources and then feeding

the “filtered” information to the system in forms the system can understand. Doing so enables

the user to influence the behavior of the autonomous subsystems without understanding the

statistical models or complex algorithms used in the autonomous components.
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8.1 Conclusions

Challenges of integrating autonomy into an intelligent system can be characterized

along two dimensions: attributes of an intelligent system (capability, information management,

performance evaluation) and organizational scale (individual, collaborative agents, distributed

system). These attributes can serve as guidelines when designing autonomous components

and autonomy management tools.

We proposed a new autonomy management approach where the user influenced the

behavior of an autonomous system (or subsystem) by hierarchically managing information at

different temporal scales through two information representations: a probability distribution

map and a task-difficulty map. We designed autonomous components and autonomy manage-

ment tools for a wilderness search and rescue problem, and tailored the autonomy and tools

so that they could operate across the different temporal scales. We then presented evidence

that these tools enabled the user to create and modify these maps by incorporating their

domain knowledge and information.

The key to making it possible for the autonomy algorithms to work across temporal

scales was to endow them with the ability to use the information provided by the human

to create real-time plans. These plans were then presented to the human, allowing him or

her to modify the plan by modifying the type of information provided to the planner. For

the wilderness search and rescue problem, this required the creation of multiple real-time

UAV-based path planning algorithms that used the maps as input.

Human-interaction with the path planners came in two forms: modifying the maps and

providing constraints on the autonomy. The maps are consistent with a Bayesian approach

to decision making, yielding algorithms that outperform the state-of-the-art approaches for

problems that require real-time feedback and support partial object detection. Constraints

were implemented using a sliding autonomy interface where the user influenced the planner

by specifying path segment endpoint constraints (spatial) and flight segment durations

(temporal).
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Figure 8.1: Autonomous components and autonomy management tools of the dissertation
work at each temporal scale/hierarchy.

A user study provided evidence that this autonomy management approach enabled the

human-autonomy team to outperform the human or autonomy working alone. Additionally,

the user study provided evidence that this performance increase was accompanied by a

reduction in human cognitive workload and an improvement in the human’s perception of

the human-automation experience.

8.2 Future Work

This section presents a few of the natural extensions from current research that can

be pursued as future work. We list them in the order of the three temporal scales and show

how they relate to the various components of the dissertation work (see Figure 8.1).

8.2.1 At the Strategic Scale

Presently, the DistCreate component uses a set of default prior belief parameters

(transitional probabilities between pairs of terrain features) that can be changed by the

domain expert user based on the user’s domain expertise and information only the user
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can interpret. It would be beneficial if the system could automatically suggest transitional

probability values based on statistics from past incidents [60] after the user provides some

initial lost person profile information (such as age, gender, profession, etc.). When the user

wants to modify the suggested parameters, instead of typing in values, it would be helpful to

provide a tool that allows the user to visually see the prior belief distributions. By moving

two sliders to change the mean and standard deviation values, the user could see how the

shapes of the distributions changes. Ideally, the user could also see how this affects the shapes

of the final prior/posterior predictive probability distributions with instant feedback. This

immediate visual feedback would allow the user to understand causal effects and therefore

help the user form a mental model of the system that is similar to how the system truly

works. Figure 8.2 shows a mock up screen of such a tool. Computationally, instant feedback

would require that we perform complex matrix computations on the GPU using CUDA

(Compute Unified Device Architecture) architecture. To evaluate how this would affect the

human-autonomy interaction and the performance of the human-autonomy team, a user

study could be performed.

The DistCreate component considers three terrain features: topography, elevation,

and vegetation density. It is probably beneficial to incorporate more factors that affect

lost-person behaviors into the network. Such factors include but are not limited to direction

of travel, trail following, missing person profile, panicking factor, weather conditions and

season of the year. Such factors could be included into the existing Bayesian network as

prior nodes. Additional utility tools might be needed to generate geographic data when it is

not directly available. For example, if trail data cannot be automatically extrapolated, such

utility tools would allow the search to manually mark trails on a map.

Currently the user can only specify whether to use past-human behavior data or not

with the DistCreate component. In the future, as more past-human behavior data become

available, the data could be stored in a database, and the user could further decide which

subset of the behavior data to use by querying the database. For example, the user could
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Figure 8.2: A mock up screen for the management tool interface at the strategic scale.

choose to only use data of the same search region, season of the year, or only data from

people who have similar profile (age, gender, profession, etc.) with the missing person.

The DiffCreate component uses vegetation coverage data from USGS satellite imagery

data to extrapolate vegetation density and determines task difficulty (detection probably). A

more advanced model could be designed to include additional factors such as UAV height

above ground, time of the day, season of the year, “seeability” [82], and sensor specific

properties (e.g., an infrared multi-spectrum camera). Additional constraints such as no-fly

zone or dangerous areas could also be included in the task-difficulty map.

8.2.2 At the Between-Episodes Scale

The DistEdit and DiffEdit components at this temporal scale let the user use

mouse and finger gestures to edit the probability distribution map and the task-difficulty map

generated from the strategic scale in a 3D environment. In this dissertation we only validated
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the usefulness of these two tools by demonstration. To better evaluate the usefulness of the

two tools, a well-designed user study should be performed. Ideally, these tools should be

given to real searchers and rescuers to generate maps for real WiSAR scenarios. The user

should be able to modify these maps as new information becomes available. For example,

the maps should be modified when a piece of clothing or candy wrapper is found during the

search, or when ground searchers have thoroughly searched an area and confirmed that the

missing person is unlikely located at certain regions. These tools could also be integrated

with the Sliding Autonomy component so the two maps can be updated in real time while

the UAV is in the air during the mission.

8.2.3 At the Within-Episode Scale

At this temporal scale we designed multiple intelligent path planning algorithms that

support real-time feedback and partial detection. These algorithms assume the missing person

is stationary and the probability distribution map and the task-difficulty map are static.

Because these algorithms are very fast, they should be improved to deal with moving targets,

changing probability distributions and a task-difficulty map that changes over time. Then

to further expand the problem, these algorithms could be improved to work with multiple

targets or support multiple UAVs. We leave these to future work.

The SlidingAutonomy interface allows the user to affect the behavior of the path

planning autonomy by setting temporal and spatial constraints. The user study we performed

was a short-term study where each user had only minimal training before using this interface.

Because a human’s trust in autonomy can change over time, it would be interesting to research

how the user’s trust gets calibrated when the user uses this autonomy management approach

for a long period of time. Would the user be able to gradually identify the weaknesses of

the path planning autonomy and remedy correctly? Would the user overtrust autonomy and

perform worse in the long run? Or would the user undertrust autonomy because autonomy

makes obvious mistakes in certain scenarios? In our user study, the two scenarios used are both
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relatively easy scenarios. When more complex probability distribution maps and task-difficulty

maps are used, the benefit of using the SlidingAutonomy interface might be more obvious,

and it would be interesting to investigate how users would react to that. It is also possible

to let the user specify the number of top regions through the SlidingAutonomy interface

for the Top2 and TopN algorithms and see how that would affect the human-autonomy

interaction. These questions can only be answered with a long-term user study, which we

leave for future work.

At this temporal scale, while the UAV is in the air during mission, as information is

collected and processed by the collective search and rescue team, situation could arise when

the probability distribution map and/or the task-difficulty map become incorrect. If these

two maps cannot be updated in real-time, how could the user use the SlidingAutonomy

interface to influence path planning autonomy in order to address the information change?

The user might want the UAV to avoid certain regions or force the UAV to visit other

regions repeatedly. How well does the SlidingAutonomy interface support such interaction

could be another interesting research topic. A user study could be performed to evaluate

the human-autonomy interaction experience and the performance of this sliding autonomy

approach.

8.2.4 The Overall Autonomy Management Approach

In this dissertation we applied the proposed autonomy management approach to the

application domain of using a UAV to support Wilderness Search and Rescue. It is worth

hypothesizing that this approach could be generalized and applied to many application

domains. For example, when using an assistive robot to help a therapist treat children with

autism, robot autonomy could also be managed by hierarchically managing information at

different temporal scales.

At the strategic scale, before a child with autism begins clinical treatments, the

therapist performs a series of evaluations. Information collected is analyzed to determine the
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deficiencies, then a treatment plan is created identifying areas the therapist should focus on

(e.g., joint attention, turn taking). Here this areas of focus map is analogous to the probability

distribution map we discussed before. It is possible to develop a model to assist the therapist

in generating this initial plan at the general trend scale. The therapist could decide what

model parameters and dataset to use to train the model or to affect the plan. Similarly, a

task-difficulty map could be created identifying areas where the therapy treatment might not

be very effective.

At the between-episodes scale, a child with autism may receive one or two treatments

each week. At different stages of the treatment the therapist might focus on different areas

or reinforce certain behaviors in each session. The therapist may prefer the robot to have

exaggerated facial expression and movement in one session but appear calmer and more

verbose in another; or the therapist might want the robot to demonstrate a higher degree

of reliance on the therapist. Ideally, by adjusting the areas of focus and the task-difficulty

map at the between-sessions scale, the therapist could take advantage of special knowledge

or experience and indirectly affect the robot’s autonomous behaviors by managing what

information to provide.

At the within-episode scale, during a clinical session a child with autism might

not behave as the therapist expects (due to fatigue, previous events, or unexpected events).

The therapist needs to be able to manage the robot’s autonomous behaviors in real-time in

order to improve or maximize the potentials of the treatment. The ability to modify the

areas of focus and the task-difficulty map in real time affords the therapist the desired levels

of control. The therapist could also strategically plan out the order of activities (targeted

to different deficiencies) and desired intensity (time allocated to each activity) during the

session to improve the efficiency of the treatment. At the within-session scale, the therapist

is really actively collecting information (the child’s behavior and reaction), digesting the

information, and then deciding what information to provide to the system, in forms the

system can understand, in order to manage the autonomous behavior of the robot.
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Applying our proposed autonomy management approach to a completely different

application domain and then evaluating how well the approach generalized is an important

part of future work.
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Appendix A

Complexity Analysis of the UAV Path Planning Problem

In this appendix, we analyze why a heuristic approach is preferred to a dynamic

programming / reinforcement learning approach by comparing the computational complexity

of each approach.

A.1 Computational Complexity of Dynamic Programming

Classical dynamic programming (DP) is a method for solving complex problems by

breaking them down into simpler subproblems. Solution to subproblems can be stored to

trade space for time. Problems that can be solved by DP must exhibit two key attributes:

optimal substructure and overlapping subproblems. When DP is used to solve the traveling

salesman problem (TSP), the complexity is still O(2nn2) [6]. DP method suffers the “curses

of dimensionality” and does not scale well with complex problems.

The key issue is that the path planning problem that we are solving cannot be solved

in polynomial time using dynamic programming unless P=NP1. The justification for this is

as follows:

• The problem that we are solving is at least as computationally complex as what is

known as the Orienteering Problem.

• The Orienteering Problem is at least as computationally complex as the Traveling

Salesperson Problem.

1The path planning problem we are solving is similar to the Orienteering Problem (OP), which can be
seen as a combination between the Knapsack Problem (KP) and the Traveling Salesman Problem (TSP) [128].
In a fully connected graph where each vertex has a certain score (prize), with fixed starting vertex and end
vertex, the OP problem asks for the path that would achieve the highest score within a given time frame.
That is why the OP problem is also called the Prize-Collecting TSP [45] problem and TSP with profits [30].
Scores are entirely additive and each vertex can only be visited once (not all vertices have to be visited). OP,
like TSP, is an NP-hard problem.

Our path planning problem is different from the OP problem in the following aspects: (a) we use a grid
representation because this is compatible with UAV flight, so the search is on a graph that is not a complete
graph (fully connected); (b) the Bayesian sensing of the UAVs sensors require that the path planning be able
to visit the same vertex repeatedly; and (c) this means that the “prize” rewarded for each visit to a vertex is
only partially collected and is path dependent.
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• The Traveling Salesperson Problem is in the complexity class f-NP, with its corresponding

decision problem in the class NP-complete.

• By reduction, this means that our path planning problem is NP-hard and cannot be

solved in polynomial time unless P=NP.

• Because the path-planning problem is NP-hard, we cannot solve it using dynamic

programming in real time for the planning lengths that we consider (up to 900 planning

steps).

Our path planning problem has a state space of 10,000 nodes and a flight path of 900

(possibly higher in real application) time steps, meaning that theoretically the same node

could be visited 900 times. If we treat each visit to the same node as a separate node, the

state space expands to 9,000,000 nodes, and tracking the connectivity of all these nodes (not

complete) also becomes intractable.

In order to support real WiSAR operations, we need to have the path created within

seconds. Also in practical Wilderness Search and Rescue scenarios, the search area could

be much bigger than the 10,000 nodes we demonstrated. The UAV flight time can also be

much longer depending on the type of UAV platforms used. That’s why we chose a heuristic

approximation approach in solving this problem. The complexity of our approach is O(n)

once we have the Mode Goodness Ratio (MGR) heuristic [72], where n is the flight duration

in time steps (n=900 in our scenarios). This means our approach is very fast and scales very

nicely with the NP-hard problem.

A.2 Computational Complexity of Reinforcement Learning (Ap-

proximate Dynamic Programming)

Instead of solving for the exact solution, approximate dynamic programming / reinforce-

ment learning (ADP/RL) are approximate methods to search for solutions that approximate

the optimal solution for complex problems to avoid the “curses of dimensionality”. ADP/RL

methods have four main sub-elements: a policy, a reward function (immediate payoff), a value

function (long-term payoff), and optionally, a model of the environment. A policy defines the

learning agent’s behavior at a given time, a reward function defines the goal and indicates

what is good in an immediate sense, a value function specifies what is good in the long run,

and, the model of the environment mimics the behavior of the environment. The idea is to

learn the optimal policy iteratively for each state, balancing exploration and exploitation.

ADP/RL methods use Markov Decision Process (MDP) and can work with problems that

have uncertainty in transition.
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Reinforcement learning cannot learn an optimal solution to an NP-hard problem

in polynomial time2. If it could, then P=NP. Moreover, reinforcement learning typically

requires many, many iterations to reach convergence even for moderately sized problems,

meaning it is likely to be significantly slower. Even dynamic programming-based approaches

to reinforcement learning, like learning the transition model and applying policy iteration,

cannot run in polynomial time on an exponential problem.

In addition to this fundamental limitation of what reinforcement learning can theoreti-

cally do, there is a second practical problem with using reinforcement learning for this problem.

This practical limitation is that reinforcement learning approaches tend to get stuck in local

minimal when there are multiple rewards in the problem. Indeed, the literature includes many

papers that seek to resolve this problem by trading off exploration and exploitation [117].

These approaches work in practice for some problems, but there is no evidence that these

approaches will work for problems that are exponentially complex.

Moreover, the state space of our path-planning problem grows exponentially because

of the possibility of revisiting states. For each revisit, a new reward function must be

defined because the Bayesian approach allows for partial collection of information. The

reward function and the value function both become path dependent. This means that we

end up with an exponentially hard problem with an exponentially large state space and a

unique reward for each element of the state space. There is no known reinforcement learning

algorithm that can solve such problems, let alone solve it in real-time.

2The approximate dynamic programming / reinforcement learning (ADP/RL) approach does not support
(near) real-time solution. For example, Righini and Salanil show in [95] that it takes roughly 1000-3000
seconds to solve an OP type problem with 100 vertices/nodes. The ADP/RL approach also does not scale
well due to its complexity. Vansteenwegen et al. surveyed different approaches to solving the OP [128]. Most
of the approaches were heuristic approaches, and the only ADP/RL approach mentioned is [95].
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Appendix B

Full Experiment Results for Chapter 5

Here we present the full experiment results of the four WiSAR scenarios described in

Chapter 5. For each scenario, we generate paths with three flight durations (T = 300, T = 600,

and T = 900) and compare algorithm computation speed (in seconds) and path EfficiencyLB

(in %) for BA, LHC-GW-CONV, Top2, and TopN algorithms (including Top2 and TopN

algorithms where k = 5 and N = 3). All numbers shown are averages of 10 runs. Best

performance results are displayed in bold font face. Standard deviations (σ) are also shown

for both computation speed and path EfficiencyLB .

Table B.1 shows the experiment results for the synthetic WiSAR scenario with a

multi-modal distribution of the missing person location and a simple task-difficulty map with

three difficulty levels (as shown in Fig. 5.2). The UAV path starts from a subregion with

high task-difficulty (lower right corner).

T = 300 T = 600 T = 900

Speed σ ELB σ Speed σ ELB σ Speed σ ELB σ

BA - - 27.59 - - - 43.54 - - - 59.56 -

LHC-GW-CONV 0.17 0.01 92.26 0.00 0.33 0.07 92.68 0.00 0.51 0.09 94.03 0.01

Top2 (1 layer) 0.12 0.05 87.49 0.03 0.14 0.04 91.66 0.04 0.15 0.04 91.02 0.03

TopN (1 layer) 0.10 0.05 91.28 0.02 0.08 0.05 91.93 0.04 0.07 0.03 95.24 0.01

Top2 (Hierarchy) 0.37 0.10 90.85 0.02 0.42 0.10 93.83 0.02 0.48 0.10 93.59 0.01

TopN (Hierarchy) 0.91 0.21 92.27 0.00 0.84 0.16 95.50 0.01 0.93 0.21 95.56 0.01

Table B.1: Algorithms speed and EfficiencyLB comparison for the multi-modal synthetic
scenario.

Table B.2 shows the experiment results for the HikerPaul WiSAR scenario, in which

an elderly couple was reported missing near the Grayson Highlands State Park in Virginia.

Fig.5.10 shows the probability distribution map and the task-difficulty map for the scenario.

Fig.5.11 shows example paths generated. Each UAV path starts from the Last Known

Position (LKP), which is in the middle of the search region.
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T = 300 T = 600 T = 900

Speed σ ELB σ Speed σ ELB σ Speed σ ELB σ

BA - - 56.95 - - - 60.07 - - - 57.11 -

LHC-GW-CONV 0.30 0.16 60.18 0.13 0.47 0.03 56.76 0.00 0.98 0.16 55.18 0.00

Top2 (1 layer) 0.24 0.06 66.68 0.09 0.30 0.11 65.21 0.07 0.41 0.20 66.08 0.07

TopN (1 layer) 0.25 0.07 76.19 0.08 0.24 0.11 71.02 0.04 0.22 0.09 68.26 0.04

Top2 (Hierarchy) 0.73 0.11 78.67 0.03 0.84 0.14 73.81 0.04 1.19 0.36 72.75 0.02

TopN (Hierarchy) 1.52 0.15 81.43 0.03 1.73 0.25 75.48 0.02 1.68 0.26 74.13 0.02

Table B.2: Algorithms speed and EfficiencyLB comparison for the HikerPaul scenario.

Table B.3 shows the experiment results for the NewYork53 WiSAR scenario, in which

a 46 year old male camper was reported missing near Adirondack Park in upperstate New

York. Fig.5.13 shows the probability distribution map and the task-difficulty map for the

scenario. Fig.5.14 shows example paths generated. Each path starts from the Last Known

Position (LKP), which is in the middle of the search region.

T = 300 T = 600 T = 900

Speed σ ELB σ Speed σ ELB σ Speed σ ELB σ

BA - - 39.95 - - - 54.27 - - - 65.08 -

LHC-GW-CONV 0.01 0.00 38.47 0.00 0.02 0.00 56.91 0.00 0.02 0.00 67.38 0.00

Top2 (1 layer) 0.75 0.15 54.42 0.04 0.92 0.60 66.61 0.03 0.81 0.55 72.79 0.02

TopN (1 layer) 0.70 0.45 59.15 0.07 0.77 0.55 68.78 0.04 0.69 0.30 74.54 0.01

Top2 (Hierarchy) 1.87 0.23 57.18 0.03 2.06 0.34 69.29 0.02 1.92 0.33 74.44 0.01

TopN (Hierarchy) 5.01 0.67 65.39 0.03 5.76 0.96 71.47 0.02 5.32 1.12 77.36 0.02

Table B.3: Algorithms speed and EfficiencyLB comparison for the NewYork53 scenario.

Table B.4 shows the experiment results for the NewYork53 WiSAR scenario, in which

two teenage female hikers were reported missing near West Chesterfield in Massachusetts.

Fig.5.15 shows the probability distribution map and the task-difficulty map for the scenario.

Fig.5.16 shows example paths generated. Each path starts from the Last Known Position

(LKP), which is in the middle of the search region.

T = 300 T = 600 T = 900

Speed σ ELB σ Speed σ ELB σ Speed σ ELB σ

BA - - 39.92 - - - 45.34 - - - 49.39 -

LHC-GW-CONV 0.01 0.00 41.38 0.00 0.45 0.06 52.88 0.00 0.02 0.00 52.61 0.00

Top2 (1 layer) 0.98 0.33 58.37 0.04 0.90 0.36 54.18 0.02 1.44 0.65 57.33 0.02

TopN (1 layer) 0.92 0.38 54.03 0.06 0.83 0.56 53.91 0.07 0.97 0.42 57.91 0.03

Top2 (Hierarchy) 2.42 0.39 60.73 0.02 2.52 0.67 55.91 0.01 2.50 0.23 57.94 0.01

TopN (Hierarchy) 6.81 1.10 59.60 0.02 6.59 0.98 60.26 0.01 7.42 1.11 60.99 0.02

Table B.4: Algorithms speed and EfficiencyLB comparison for the NewYork108 scenario.
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Appendix C

Hierarchical Decision Making and Hierarchical Coarse-to-Fine

Search

In several parts of our dissertation work, we used hierarchical methods to solve various

problems. In this appendix we describe two main areas where we applied the hierarchical

methods: 1) Choosing the appropriate path planning algorithm depending on the scenario

using hierarchical decision making. 2) Speeding up algorithm computation by hierarchically

searching through the parameter space in algorithms design.

C.1 Hierarchical Decision Making in Choosing the Appropriate

Path Planning Algorithm

We designed multiple intelligent path planning algorithms to tackle the UAV coverage

path planning problem at hand. According to the No Free Lunch Theorem [131], “for any

algorithm, any elevated performance over one class of problems is offset by performance over

another class.” Each path planning algorithm performs well with certain type of scenarios,

but might not perform well with other types of scenarios. Therefore, given a scenario, we use

a hierarchical decision tree to choose the appropriate path planning algorithm.

At the top level, the total amount of UAV flight time is evaluated. If flight time (in

time steps) is much larger (e.g, 10 times) than the size of the search area (in number of cells),

the Complete-Coverage (CC) algorithm can be used to just exhaustively search the entire

area with lawnmower patterns.

At the next level, the amount of computation time allowed is evaluated. If there’s

no rush to generate a UAV flight path within seconds, the Evolutionary (EA-Path) algorithm

can be used to iteratively improve the flight path. The EA-Path algorithm can generate a

final path in about 30 seconds. If it is necessary to generate a UAV flight within a fraction of

a second (e.g. in the Sliding Autonomy interface), then the LHC-GW-CONV algorithm or

the CC algorithm can be used, because they are both very fast algorithms.
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Figure C.1: A synthetic WiSAR scenario. Left: Multi-modal probability distribution. Middle:
A simple task-difficulty map. Right: Probability collectible on first visit (combining probability
distribution and task-difficulty map).

After combining the probability distribution map and the task-difficulty map (if one is

used), we can compute a 3D surface indicating at each cell the amount of probability collectible

when the UAV visit the cell the first time. The shape of this surface is considered at the

next level of the decision tree. If the surface is completely flat like a uniform distribution,

then the CC algorithm is the best candidate because a lawnmower pattern is the optimal path.

If the surface is a unimodal surface, then the LHC-GW-CONV algorithm is selected, because

it can generate a spiral-pattern path, which is optimal for this scenario. For a multi-modal

surface, we move on to the next level of the decision tree.

At the last level, we check if a task-difficulty map is used. In other words, whether

partial detection is considered. If the answer is no, then the LHC-GW-CONV algorithm

is preferred, because the algorithm is fast and the average performance of the algorithm is

quite good when 100% detection probability is assumed.

C.2 Hierarchical Coarse-to-Fine Search in Parameter Space

In the LHC-GW-CONV and Top2 algorithms we used the same hierarchical coarse-to-

fine search technique to speed up the search for the best UAV path. Here we describe the

technique in detail using the Top2 algorithm as an example.

The Top2 algorithm is designed to generate paths that force the UAV to visit the top

2 subregions in the search area. First the Mode Goodness Ratio heuristic is used to identify

the top 2 search subregions (represented by centroids). Then, shortest path segments from

the start location and the end location (optional) to the nearest centroid are created. The

algorithm then identifies a point (vertex) equidistant from the two centroids and launches two

path planning tasks to plan path segments from each centroid to that point. By allocating

different percentages of the remaining flight time to these two path planning tasks, the Top2
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Figure C.2: Performance of the Top2 algorithm with the example WiSAR scenario when
flight time allocated to first path segment varies.

algorithm can effectively search within a new dimension of time allocation. When searching in

this new dimension, we used the coarse-to-fine search technique to improve search efficiency.

Figure C.1 shows an example synthetic WiSAR scenario, and Figure C.2 shows how

search efficiency (CDP) changes when different amount of flight time (in time steps) is

allocated to the first path segment (the total amount of flight time is static). The curve in

Figure C.2 resembles a smooth curve with only one mode, meaning the local maximum would

be the global maximum. This property allows us to use a coarse-to-fine search technique so

we don’t have to search exhaustively through the parameter space.

The coarse-to-fine technique is a recursive method with the number of recursive runs

predetermined, depending on what resolution is needed. We start from a low resolution (large

chunks of flight time transfered from one path planning task to the other) and gradually

increase the resolution (smaller chunks) until the best path is found at the desired resolution.

First the total flight time is divided into equal chunks (3 chunks in our implementation),

then four paths are generated with 0, 1, 2, and 3 chunks of flight time allocated to path

segment 1 (remaining time allocated to path segment 2). The performance of these four

paths are marked in Figure C.2 relatively by four orange lines labeled 1–4. Then the flight

time allocation that generates the best path (maximum CDP) is identified (green line 2).

In the next recursive run, the flight time chunk in the previous run is divided into smaller

equal chunks, and three more paths are generated at each side of the green line 2 (marked
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with shorter blue lines). Together with green line 2, performance of these seven paths are

compared, and the one with the best path (still green line 2) is identified and will be used as

the center for the next recursive round of search (between blue line 5 and 6). With a few

recursive runs, the best time allocation point (between blue line 5 and green line 2) can be

identified quickly without exhaustively searching through all the possible time allocation

options.
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Appendix D

Identifying Modes in a 3D Surface using Local-Hill Climbing with

Memory

A probability density function over a 2D map encodes the probability of certain events

in a specific region. For example, the probability density function created for a Wilderness

Search and Rescue (WiSAR) operation can show the searchers areas where it is more likely

to find the missing person. The distribution map can be used to allocate search resources

and to generate flight paths for an Unmanned Aerial Vehicle (UAV). Figure D.1 shows an

example probability distribution map with 4 modes.

Because different path-planning algorithms may be better suited for different proba-

bility distributions [131], identifying the type of distribution beforehand can help us decide

what algorithm is appropriate for the specific path-planning task. In our decision process,

we particularly care about how many modes the probability distribution has. So how can

we automatically identify all the modes in a 3D probability distribution surface? In this

appendix we describe the algorithm we use.

In our case, the 3D probability distribution surface is represented by a matrix/table

where each value represents the height of the point. You can think of this distribution as a

gray-scale image where the gray value of each pixel represent the height of the point.

The local hill climbing with memory algorithm proceeds as follows:

Figure D.1: An example 3D surface with 4 modes.
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1. Downsample and smooth the distribution: If the distribution map is very large,

it is useful to downsample the distribution to improve algorithm speed. For the results

in this dissertation, we used 1002 sample points over an 100 × 100 grid. Since the

algorithm assumes that the surface is free of noise, it may be necessary to smooth the

surface using a Gaussian filter. The results in this dissertation assume a noise-free

surface and, therefore, do not use smoothing.

2. Check for a uniform distribution (a flat surface): It is a good idea to check if the

probability distribution is a uniform distribution. Just check to see if all values in the

matrix are identical or are within ε units of each other. If a uniform distribution is

identified, we know the distribution has 0 modes and we are done.

3. Local Hill Climbing with Memory: Start from any point of the surface and then

check its neighbors (8-connected). As soon as an unvisited neighbor with the same or

better value is found, we “climb” to that point. As we “climb” and check neighbors,

we mark all the points we visited along the way. When we check neighbors, we only

check points we have not visited before. This way we avoid finding a mode we had

found before. The “climb” process is repeated until we reach a point (hilltop) where

all unvisited neighbors (if there is any) have smaller values. Once we find a “mode”,

we can start from another unvisited point on the surface and do another Local Hill

Climbing. Here I use quotes around the word mode because we are not sure if the

“mode” we found is a real mode, meaning that we have actually found a local maximum

of the probability surface.

4. Make sure the “mode” we found is a real mode: The “mode” we found using

Local Hill Climbing might not actually be a real mode. It might be right next to a

mode previously found and have a lower value (because we only checked unvisited

neighbors in the previous step). It might also be part of another flat-surface mode

where the mode consists of multiple points with identical values (think of a hilltop that

looks like a plateau or think of a ridge). Things get even more complicated with special

distributions such as the example in Figure D.2.

Moreover, the “mode” point we found might be connected to a previously found mode

through other points with the same value (e.g, the “mode” point is the end point of

the short branch in the middle of Figure D.2). Therefore, we need to keep track of all

points leading to the final “mode” point that have identical values and check all the

visited neighbors of these points, making sure this flat surface is not part of a previously

found mode. If these points make up a real new mode, we mark these points with a

unique mode count id (e.g, mode 3). If they are only part of a previously found mode,
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Figure D.2: An example path-type distribution resembling the Great Wall of China.

we mark these points with the previously found mode id (e.g., mode 2). If one of them

is right next to a previously found mode but has lower value, we mark these points as

non-mode points. This step is almost like performing a connected-component labeling

operation in Computer Vision [110].

At the end of the algorithm run, we will have a count of how many modes the

probability distribution has (maximum mode id) and also a map with all the mode points

marked.
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Appendix E

Sliding Autonomy User Study Design and Full Results for

Chapter 6

E.1 User Study Design

We performed a 2×3 within-subject design with 2 scenarios (easy vs difficult) and 3

planning methods (manual, pattern, and sliding autonomy). All participants completed all

6 exercises. The order of the scenarios and planning methods is counterbalanced to reduce

learning effect. Half of the participants started with scenario 1 (the other half scenario 2). and

the order of the planning methods were randomly drawn without repeat from the permutation

of all possible combinations (without following the same order in both scenarios).

E.1.1 Participants

After analyzing data collected from a pilot study with 6 volunteers, it was determined

that 25 participants would likely produce significant test results. We recruited a total of 26

college students (14 males and 12 females) between the age of 19 and 30 (average 22.89).

None has colorblindness. The majority has no experience with robots (57.69%), and 34.62%

of them are slightly experienced with vacuuming robots.

E.1.2 Simulation Environment

The user study is conducted in a 3D simulation environment. The top portion of

Figure E.1 shows a screen capture of the simulation interface. Both the probability distribution

map and the task-difficulty map are displayed as 3D surfaces with a color map (red means

high altitude and blue means low). The user can switch between the two maps at any time.

The user can also rotate/pan a map and zoom in/out at will. The UAV in the simulation is

a hexacopter that is capable of flying in all directions or hover in the same spot.

With the manual planning method, the user can fly the UAV around with arrow

keys as the clock runs in a sped up fashion. The user can switch between two flying modes,

turn mode and strafe mode, and four camera views, global view (always north up with
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Figure E.1: Top: User study simulation interface with sliding autonomy method showing
the probability distribution map for scenario 1. Middle left: Probability distribution map for
scenario 2. Middle Right: Task-difficulty map for scenario 2. Bottom: The three patterns
available to user in pattern planning mode, spiral, lawnmower, and line.

213



www.manaraa.com

full view of the map), behind view, bird’s eye view, and free form view (where the user

can rotate/pan/zoom while flying). The user can pause/resume the flight to perform the

secondary task or just to review the search area for better planning.

With the pattern planning method, the user can choose from three simple patterns

(spiral, lawnmower, and line as shown in the bottom portion of Figure E.1) and join these

patterns to form the final path. As the user moves the cursor around, the size of the pattern

changes with the cursor position marking the end of the path segment (up to the remaining

flight time to keep the path valid). Rotation of the lawnmower pattern can be achieved by

rotating the map left/right instead. And rotating the map up/down turns the perfect spiral

pattern into an ellipse pattern. The user can also undo the last path segment created all the

way back to the start. This planning method is “semi-autonomous” because the patterns are

generated automatically without manually setting waypoints.

With the sliding autonomy method (top portion of Figure E.1), the user can

(optionally) set an end point anywhere on the map (reachable within remaining flight time)

for the current path segment and then see the path suggested by autonomy. Then he/she

can drag the knob of the left slider to change the amount of time allocated to autonomy, and

see path suggested by autonomy instantly for each time allocation as the knob of the slider

is dragged up or down. The slider’s max value always reflects the remaining flight time (in

minute) for the user to plan. If the user is happy with the current path segment, he/she

approves it, the UAV moves to the end of the path segment, and the process repeats until all

flight time has been planned. The path planning algorithm used in this planning method is

the LHC-GW-CONV algorithm described in [69, 72]. We choose this algorithm because it is

the fastest algorithm out of all the algorithms we designed.

The right slider is used to set the resolution or step value of the left slider and has a

range between 1 and 10. For example, if the value of the right slider is set to 10, moving

the left slider from bottom up will change time allocation to 10, 20, 30, ..., respectively. The

purpose of the second slider is to improve the interaction experience when the user moves the

left slider, because in order to provide instant feedback, paths with different time allocation

need to be pre-computed by autonomy. Although each path only takes a fraction of a second

to generate, for a 60-minute flight autonomy has to generate 60 paths for all possible time

allocations, which can take a long time. When the value of the second slider is set high, only

a small number of paths need to be pre-computed which enables the instant feedback. This

feature turned out to have negative effect on users’ interaction experience, which we will

discuss later.

With all three planning methods, the user can choose to start over at any time during

the exercise, and can restart as many times as exercise time allows, and we record the best
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path out of all tries. Each user fully understands how the manual and pattern planning

methods work, but does not know how path planning autonomy generates paths behind the

scene in the sliding autonomy method.

E.1.3 Scenarios

The user study contains two WiSAR scenarios. Scenario 1 is a synthetic case with a

probability distribution map that is a mixture of five Gaussians (shown in the top portion of

Figure E.1). No task-difficulty map is used in this scenario (uniform detection probability is

assumed).

Scenario 2 comes from a real WiSAR scenario, in which An elderly couple was reported

missing near the Grayson Highlands State Park in Virginia. The probability distribution map

used for this scenario (Figure E.1 middle left) was generated using a Bayesian model [70].

The map has been evaluated at George Mason University’s MapScore web portal [18] and

performed better than most other models evaluated1. This scenario also uses a task-difficulty

map, and the map (Figure E.1 middle right) was generated using vegetation density data

downloaded from the USGS web site and categorized into three difficulty levels (sparse,

medium, and dense, with detection probability of 100%, 66.67%, and 33.33% respectively).

Scenario 2 is clearly more complicated than scenario 1 because the user also has to

consider the different detection probability defined by the task-difficulty map. We refer to

scenario 2 as the high information scenario and scenario 1 as the low information scenario.

E.1.4 Secondary Task

In each exercise, we also ask each participant to perform a secondary task together

with the main task of path planning. This way we can measure the mental workload of the

user. The secondary task is in the form of a group chat window (see the lower left corner of

the top picture in Figure E.1), and when the user’s code name “Eagle” is called, the user

is asked to answer simple questions by typing in the chat window. Every 3 seconds (plus a

random integer drawn from the uniform distribution [-2,2]) a text message is sent to the chat

window, and every 5th message asks the user a simple question. Therefore, every minute the

user receives 20 messages and 4 of them are directed to the user. For the same scenario and

the same planning method, all users use the same set of chat messages.

We choose to use a group chat window as the secondary task because this is typical in

real SAR operations. We also designed the chat messages to simulate a real WiSAR search.

The user is asked to acknowledge connection and report path planning status periodically.

1Scoring 0.8184 on a [-1,1] scale where the higher the score the better. http://sarbayes.org/projects/
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This design ensures that the secondary task is ecologically valid [94, 129] and makes the

experiment result more convincing.

E.1.5 Procedure

Each participant first fills out a demographic survey after signing the IRB consent form,

then he/she completes four training exercises. The first three training exercises teach the user

how to plan paths with the three planning methods using a simple probability distribution

map and no task-difficulty map. The fourth training exercises adds the task-difficulty map to

the path planning problem, and the user gets to practice the manual planning method again.

Each training exercise lasts 5 minutes and the user cannot skip it. A “cheat sheet” is provided

to each participant during the entire user study to explain the simulation environment and

key concepts. Each participant is also asked to read the instructions for the NASA TLX

survey.

Then each participant completes the six exercises (2 scenarios and 3 planning methods

each) in a counterbalanced order. For each exercise the user has up to 5 minutes to plan a

path. Once the user is happy with the path generated, he/she can finish the exercise early.

We choose this design because we do not want the user to put all effort into completing the

secondary task once he/she considers the primary task completed, which would skew the

measurements on secondary task performance.

After the user completes each exercise, we ask the user to complete a NASA TLX

survey for the exercise. Then after all six exercises are completed, the user fills out a post

user study survey describing his/her subjective preference with the three planning methods.

E.2 User Study Results

We analyzed user study data with a mixed measures analysis of variance (ANOVA).

In this section we list the complete user study result analysis.

E.2.1 Comparing Across Scenarios

Table E.1 lists the user study results compared between scenario 1 (low information)

and scenario 2 (high information) with statistically significant results highlighted in bold.

No statistically significant differences were found for percent score, time spent, try

count, percent of questions missed, and chat latency across scenarios. However, mouse clicks

per try and NASA TLX are significantly different between the two scenarios, indicating

scenario 2 with high information load required more work and cognitive workload are needed

for scenario 2.
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Table E.1: Comparing across scenarios (SE stands for standard error)

S1 Low S2 High SE Significance
% Score 76.99 74.17 1.12 F [1, 25] = 7.51, p = .01
Time spent 224.01 250.47 12.06 F [1, 25] = 8.35, p = .0079
Try count 3.08 2.67 0.37 F [1, 25] = 3.32, p = .80
Clicks/try 15.95 33.54 2.59 F [1, 25] = 28.65, p < .0001
NASA TLX 48.19 58.17 2.50 F [1.25] = 31.35, p < .0001
% Q. missed 54.88 54.90 5.18 F [1, 25] = 0.00, p = .99
Chat latency 10.88 10.77 0.56 F [1, 25] = 0.03, p = .88

E.2.2 Comparing Across Planning Methods

Table E.2 lists user study results comparison among the three path planning methods

(manual, pattern, and sliding autonomy). with statistically significant results highlighted in

bold.

No statistically significant differences were found for time spent, try count, percent of

questions missed, and chat latency across scenarios. However, sliding autonomy performed

significantly better than pattern and pattern also performed significantly better than manual

in both scenarios. Mouse clicks per try and NASA TLX are also significantly different among

the three planning methods.

Table E.2: Comparing across planning methods (SE stands for standard error)

M P SA SE Significance
% Score 59.40 72.75 94.60 1.39 F [2, 50] = 223.03, p < .0001
Time spent 243.35 240.02 228.37 12.06 F [2, 50] = 1.16, p = .32
Try count 1.75 3.56 3.31 0.43 F [2, 50] = 9.47, p = .0003
Clicks/try 13.01 35.64 25.58 2.90 F [2, 50] = 19.47, p < .0001
NASA TLX 61.51 49.18 48.86 2.81 F [2, 50] = 14.15, p < .0001
% Q. missed 52.94 56.69 55.04 5.17 F [2, 50] = 1.26, p = .29
Chat latency 10.39 11.17 10.92 0.65 F [2, 50] = 0.46, p = .63

E.2.3 Additional Factors

We also performed ANOVA analysis on some additional factors that might create

differences between scenarios or among planning methods: gender, experience in video games,

order of the scenarios, and whether participants used full autonomy with the sliding autonomy

method. Table E.3 lists analysis results. No statistically significant differences were found
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in any of these factors. There is also no significant correlation (-0.23) between percent of

questions missed in the secondary task and the NASA TLX raw scores.

Table E.3: ANOVA Analysis Results for Additional Factors

Overall Scenario Method

Gender F [1, 24] = 0.05, p = .83 F [1, 24] = 0.76, p = .39 F [2, 48] = 0.59, p = .56

Video Game Exp. F [4, 21] = 0.78, p = .55 F [4, 21] = 1.64, p = .20 F [8, 42] = 1.13, p = .37

Scenario Order F [1, 24] = 0.09, p = .77 F [1, 24] = 0.39, p = .54 F [2, 48] = 1.53, p = .23

Full Autonomy F [1, 22] = 3.70, p = .07 F [1, 22] = 0.36, p = .56 F [2, 44] = 0.04, p = .96

E.2.4 Comparing Against Autonomy Performance Markers

Table E.4 summarizes what percent of participants were able to perform better than

autonomy working alone with each planning method in each scenario.

Table E.4: Percent of participants outperforming autonomy with each method

Manual Pattern Sliding Autonomy
Scenario 1 (Low) 0% 0% 88.46%
Scenario 2 (High) 0% 19.23% 92.31%

Table E.5 lists what percentage of participants outperformed full autonomy, EA, and

autonomy+1 human input.

Table E.5: Percent of participants outperforming autonomy performance markers

Autonomy EA Autonomy+1
Scenario 1 (Low) 88.46% 88.46% 7.69%
Scenario 2 (High) 92.31% 26.92% 15.38%
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